Metamath Proof Explorer


Theorem lcdlss

Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses lcdlss.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdlss.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
lcdlss.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdlss.s 𝑆 = ( LSubSp ‘ 𝐶 )
lcdlss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdlss.f 𝐹 = ( LFnl ‘ 𝑈 )
lcdlss.l 𝐿 = ( LKer ‘ 𝑈 )
lcdlss.d 𝐷 = ( LDual ‘ 𝑈 )
lcdlss.t 𝑇 = ( LSubSp ‘ 𝐷 )
lcdlss.b 𝐵 = { 𝑓𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
lcdlss.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcdlss ( 𝜑𝑆 = ( 𝑇 ∩ 𝒫 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lcdlss.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdlss.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdlss.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
4 lcdlss.s 𝑆 = ( LSubSp ‘ 𝐶 )
5 lcdlss.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 lcdlss.f 𝐹 = ( LFnl ‘ 𝑈 )
7 lcdlss.l 𝐿 = ( LKer ‘ 𝑈 )
8 lcdlss.d 𝐷 = ( LDual ‘ 𝑈 )
9 lcdlss.t 𝑇 = ( LSubSp ‘ 𝐷 )
10 lcdlss.b 𝐵 = { 𝑓𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑓 ) ) ) = ( 𝐿𝑓 ) }
11 lcdlss.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 1 2 3 5 6 7 8 11 10 lcdval2 ( 𝜑𝐶 = ( 𝐷s 𝐵 ) )
13 12 fveq2d ( 𝜑 → ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ ( 𝐷s 𝐵 ) ) )
14 4 13 eqtrid ( 𝜑𝑆 = ( LSubSp ‘ ( 𝐷s 𝐵 ) ) )
15 14 eleq2d ( 𝜑 → ( 𝑢𝑆𝑢 ∈ ( LSubSp ‘ ( 𝐷s 𝐵 ) ) ) )
16 1 5 11 dvhlmod ( 𝜑𝑈 ∈ LMod )
17 8 16 lduallmod ( 𝜑𝐷 ∈ LMod )
18 1 5 2 6 7 8 9 10 11 lclkr ( 𝜑𝐵𝑇 )
19 eqid ( 𝐷s 𝐵 ) = ( 𝐷s 𝐵 )
20 eqid ( LSubSp ‘ ( 𝐷s 𝐵 ) ) = ( LSubSp ‘ ( 𝐷s 𝐵 ) )
21 19 9 20 lsslss ( ( 𝐷 ∈ LMod ∧ 𝐵𝑇 ) → ( 𝑢 ∈ ( LSubSp ‘ ( 𝐷s 𝐵 ) ) ↔ ( 𝑢𝑇𝑢𝐵 ) ) )
22 17 18 21 syl2anc ( 𝜑 → ( 𝑢 ∈ ( LSubSp ‘ ( 𝐷s 𝐵 ) ) ↔ ( 𝑢𝑇𝑢𝐵 ) ) )
23 15 22 bitrd ( 𝜑 → ( 𝑢𝑆 ↔ ( 𝑢𝑇𝑢𝐵 ) ) )
24 elin ( 𝑢 ∈ ( 𝑇 ∩ 𝒫 𝐵 ) ↔ ( 𝑢𝑇𝑢 ∈ 𝒫 𝐵 ) )
25 velpw ( 𝑢 ∈ 𝒫 𝐵𝑢𝐵 )
26 25 anbi2i ( ( 𝑢𝑇𝑢 ∈ 𝒫 𝐵 ) ↔ ( 𝑢𝑇𝑢𝐵 ) )
27 24 26 bitr2i ( ( 𝑢𝑇𝑢𝐵 ) ↔ 𝑢 ∈ ( 𝑇 ∩ 𝒫 𝐵 ) )
28 23 27 bitrdi ( 𝜑 → ( 𝑢𝑆𝑢 ∈ ( 𝑇 ∩ 𝒫 𝐵 ) ) )
29 28 eqrdv ( 𝜑𝑆 = ( 𝑇 ∩ 𝒫 𝐵 ) )