Step |
Hyp |
Ref |
Expression |
1 |
|
lcdlss.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
lcdlss.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
lcdlss.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
lcdlss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝐶 ) |
5 |
|
lcdlss.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
lcdlss.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
7 |
|
lcdlss.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
8 |
|
lcdlss.d |
⊢ 𝐷 = ( LDual ‘ 𝑈 ) |
9 |
|
lcdlss.t |
⊢ 𝑇 = ( LSubSp ‘ 𝐷 ) |
10 |
|
lcdlss.b |
⊢ 𝐵 = { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) } |
11 |
|
lcdlss.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
1 2 3 5 6 7 8 11 10
|
lcdval2 |
⊢ ( 𝜑 → 𝐶 = ( 𝐷 ↾s 𝐵 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ ( 𝐷 ↾s 𝐵 ) ) ) |
14 |
4 13
|
syl5eq |
⊢ ( 𝜑 → 𝑆 = ( LSubSp ‘ ( 𝐷 ↾s 𝐵 ) ) ) |
15 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 ↔ 𝑢 ∈ ( LSubSp ‘ ( 𝐷 ↾s 𝐵 ) ) ) ) |
16 |
1 5 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
17 |
8 16
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
18 |
1 5 2 6 7 8 9 10 11
|
lclkr |
⊢ ( 𝜑 → 𝐵 ∈ 𝑇 ) |
19 |
|
eqid |
⊢ ( 𝐷 ↾s 𝐵 ) = ( 𝐷 ↾s 𝐵 ) |
20 |
|
eqid |
⊢ ( LSubSp ‘ ( 𝐷 ↾s 𝐵 ) ) = ( LSubSp ‘ ( 𝐷 ↾s 𝐵 ) ) |
21 |
19 9 20
|
lsslss |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝐵 ∈ 𝑇 ) → ( 𝑢 ∈ ( LSubSp ‘ ( 𝐷 ↾s 𝐵 ) ) ↔ ( 𝑢 ∈ 𝑇 ∧ 𝑢 ⊆ 𝐵 ) ) ) |
22 |
17 18 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑢 ∈ ( LSubSp ‘ ( 𝐷 ↾s 𝐵 ) ) ↔ ( 𝑢 ∈ 𝑇 ∧ 𝑢 ⊆ 𝐵 ) ) ) |
23 |
15 22
|
bitrd |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 ↔ ( 𝑢 ∈ 𝑇 ∧ 𝑢 ⊆ 𝐵 ) ) ) |
24 |
|
elin |
⊢ ( 𝑢 ∈ ( 𝑇 ∩ 𝒫 𝐵 ) ↔ ( 𝑢 ∈ 𝑇 ∧ 𝑢 ∈ 𝒫 𝐵 ) ) |
25 |
|
velpw |
⊢ ( 𝑢 ∈ 𝒫 𝐵 ↔ 𝑢 ⊆ 𝐵 ) |
26 |
25
|
anbi2i |
⊢ ( ( 𝑢 ∈ 𝑇 ∧ 𝑢 ∈ 𝒫 𝐵 ) ↔ ( 𝑢 ∈ 𝑇 ∧ 𝑢 ⊆ 𝐵 ) ) |
27 |
24 26
|
bitr2i |
⊢ ( ( 𝑢 ∈ 𝑇 ∧ 𝑢 ⊆ 𝐵 ) ↔ 𝑢 ∈ ( 𝑇 ∩ 𝒫 𝐵 ) ) |
28 |
23 27
|
bitrdi |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑆 ↔ 𝑢 ∈ ( 𝑇 ∩ 𝒫 𝐵 ) ) ) |
29 |
28
|
eqrdv |
⊢ ( 𝜑 → 𝑆 = ( 𝑇 ∩ 𝒫 𝐵 ) ) |