Metamath Proof Explorer


Theorem lcdlss2N

Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdlss2.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdlss2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdlss2.s 𝑆 = ( LSubSp ‘ 𝐶 )
lcdlss2.v 𝑉 = ( Base ‘ 𝐶 )
lcdlss2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdlss2.d 𝐷 = ( LDual ‘ 𝑈 )
lcdlss2.t 𝑇 = ( LSubSp ‘ 𝐷 )
lcdlss2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion lcdlss2N ( 𝜑𝑆 = ( 𝑇 ∩ 𝒫 𝑉 ) )

Proof

Step Hyp Ref Expression
1 lcdlss2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdlss2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
3 lcdlss2.s 𝑆 = ( LSubSp ‘ 𝐶 )
4 lcdlss2.v 𝑉 = ( Base ‘ 𝐶 )
5 lcdlss2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 lcdlss2.d 𝐷 = ( LDual ‘ 𝑈 )
7 lcdlss2.t 𝑇 = ( LSubSp ‘ 𝐷 )
8 lcdlss2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
10 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
11 eqid ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 )
12 eqid { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) }
13 1 9 2 3 5 10 11 6 7 12 8 lcdlss ( 𝜑𝑆 = ( 𝑇 ∩ 𝒫 { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) )
14 1 9 2 4 5 10 11 12 8 lcdvbase ( 𝜑𝑉 = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } )
15 14 pweqd ( 𝜑 → 𝒫 𝑉 = 𝒫 { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } )
16 15 ineq2d ( 𝜑 → ( 𝑇 ∩ 𝒫 𝑉 ) = ( 𝑇 ∩ 𝒫 { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) ) ) = ( ( LKer ‘ 𝑈 ) ‘ 𝑓 ) } ) )
17 13 16 eqtr4d ( 𝜑𝑆 = ( 𝑇 ∩ 𝒫 𝑉 ) )