Step |
Hyp |
Ref |
Expression |
1 |
|
lcdlss2.h |
|- H = ( LHyp ` K ) |
2 |
|
lcdlss2.c |
|- C = ( ( LCDual ` K ) ` W ) |
3 |
|
lcdlss2.s |
|- S = ( LSubSp ` C ) |
4 |
|
lcdlss2.v |
|- V = ( Base ` C ) |
5 |
|
lcdlss2.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
lcdlss2.d |
|- D = ( LDual ` U ) |
7 |
|
lcdlss2.t |
|- T = ( LSubSp ` D ) |
8 |
|
lcdlss2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
10 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
11 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
12 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } |
13 |
1 9 2 3 5 10 11 6 7 12 8
|
lcdlss |
|- ( ph -> S = ( T i^i ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
14 |
1 9 2 4 5 10 11 12 8
|
lcdvbase |
|- ( ph -> V = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) |
15 |
14
|
pweqd |
|- ( ph -> ~P V = ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) |
16 |
15
|
ineq2d |
|- ( ph -> ( T i^i ~P V ) = ( T i^i ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
17 |
13 16
|
eqtr4d |
|- ( ph -> S = ( T i^i ~P V ) ) |