Metamath Proof Explorer


Theorem lcdlss2N

Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdlss2.h
|- H = ( LHyp ` K )
lcdlss2.c
|- C = ( ( LCDual ` K ) ` W )
lcdlss2.s
|- S = ( LSubSp ` C )
lcdlss2.v
|- V = ( Base ` C )
lcdlss2.u
|- U = ( ( DVecH ` K ) ` W )
lcdlss2.d
|- D = ( LDual ` U )
lcdlss2.t
|- T = ( LSubSp ` D )
lcdlss2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion lcdlss2N
|- ( ph -> S = ( T i^i ~P V ) )

Proof

Step Hyp Ref Expression
1 lcdlss2.h
 |-  H = ( LHyp ` K )
2 lcdlss2.c
 |-  C = ( ( LCDual ` K ) ` W )
3 lcdlss2.s
 |-  S = ( LSubSp ` C )
4 lcdlss2.v
 |-  V = ( Base ` C )
5 lcdlss2.u
 |-  U = ( ( DVecH ` K ) ` W )
6 lcdlss2.d
 |-  D = ( LDual ` U )
7 lcdlss2.t
 |-  T = ( LSubSp ` D )
8 lcdlss2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
10 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
11 eqid
 |-  ( LKer ` U ) = ( LKer ` U )
12 eqid
 |-  { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) }
13 1 9 2 3 5 10 11 6 7 12 8 lcdlss
 |-  ( ph -> S = ( T i^i ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) )
14 1 9 2 4 5 10 11 12 8 lcdvbase
 |-  ( ph -> V = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } )
15 14 pweqd
 |-  ( ph -> ~P V = ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } )
16 15 ineq2d
 |-  ( ph -> ( T i^i ~P V ) = ( T i^i ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) )
17 13 16 eqtr4d
 |-  ( ph -> S = ( T i^i ~P V ) )