| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdlss2.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcdlss2.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 3 |
|
lcdlss2.s |
|- S = ( LSubSp ` C ) |
| 4 |
|
lcdlss2.v |
|- V = ( Base ` C ) |
| 5 |
|
lcdlss2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 6 |
|
lcdlss2.d |
|- D = ( LDual ` U ) |
| 7 |
|
lcdlss2.t |
|- T = ( LSubSp ` D ) |
| 8 |
|
lcdlss2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
| 10 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 11 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
| 12 |
|
eqid |
|- { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } |
| 13 |
1 9 2 3 5 10 11 6 7 12 8
|
lcdlss |
|- ( ph -> S = ( T i^i ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
| 14 |
1 9 2 4 5 10 11 12 8
|
lcdvbase |
|- ( ph -> V = { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) |
| 15 |
14
|
pweqd |
|- ( ph -> ~P V = ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) |
| 16 |
15
|
ineq2d |
|- ( ph -> ( T i^i ~P V ) = ( T i^i ~P { f e. ( LFnl ` U ) | ( ( ( ocH ` K ) ` W ) ` ( ( ( ocH ` K ) ` W ) ` ( ( LKer ` U ) ` f ) ) ) = ( ( LKer ` U ) ` f ) } ) ) |
| 17 |
13 16
|
eqtr4d |
|- ( ph -> S = ( T i^i ~P V ) ) |