| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdlss.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lcdlss.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lcdlss.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 4 |  | lcdlss.s |  |-  S = ( LSubSp ` C ) | 
						
							| 5 |  | lcdlss.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 6 |  | lcdlss.f |  |-  F = ( LFnl ` U ) | 
						
							| 7 |  | lcdlss.l |  |-  L = ( LKer ` U ) | 
						
							| 8 |  | lcdlss.d |  |-  D = ( LDual ` U ) | 
						
							| 9 |  | lcdlss.t |  |-  T = ( LSubSp ` D ) | 
						
							| 10 |  | lcdlss.b |  |-  B = { f e. F | ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) } | 
						
							| 11 |  | lcdlss.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 | 1 2 3 5 6 7 8 11 10 | lcdval2 |  |-  ( ph -> C = ( D |`s B ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ph -> ( LSubSp ` C ) = ( LSubSp ` ( D |`s B ) ) ) | 
						
							| 14 | 4 13 | eqtrid |  |-  ( ph -> S = ( LSubSp ` ( D |`s B ) ) ) | 
						
							| 15 | 14 | eleq2d |  |-  ( ph -> ( u e. S <-> u e. ( LSubSp ` ( D |`s B ) ) ) ) | 
						
							| 16 | 1 5 11 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 17 | 8 16 | lduallmod |  |-  ( ph -> D e. LMod ) | 
						
							| 18 | 1 5 2 6 7 8 9 10 11 | lclkr |  |-  ( ph -> B e. T ) | 
						
							| 19 |  | eqid |  |-  ( D |`s B ) = ( D |`s B ) | 
						
							| 20 |  | eqid |  |-  ( LSubSp ` ( D |`s B ) ) = ( LSubSp ` ( D |`s B ) ) | 
						
							| 21 | 19 9 20 | lsslss |  |-  ( ( D e. LMod /\ B e. T ) -> ( u e. ( LSubSp ` ( D |`s B ) ) <-> ( u e. T /\ u C_ B ) ) ) | 
						
							| 22 | 17 18 21 | syl2anc |  |-  ( ph -> ( u e. ( LSubSp ` ( D |`s B ) ) <-> ( u e. T /\ u C_ B ) ) ) | 
						
							| 23 | 15 22 | bitrd |  |-  ( ph -> ( u e. S <-> ( u e. T /\ u C_ B ) ) ) | 
						
							| 24 |  | elin |  |-  ( u e. ( T i^i ~P B ) <-> ( u e. T /\ u e. ~P B ) ) | 
						
							| 25 |  | velpw |  |-  ( u e. ~P B <-> u C_ B ) | 
						
							| 26 | 25 | anbi2i |  |-  ( ( u e. T /\ u e. ~P B ) <-> ( u e. T /\ u C_ B ) ) | 
						
							| 27 | 24 26 | bitr2i |  |-  ( ( u e. T /\ u C_ B ) <-> u e. ( T i^i ~P B ) ) | 
						
							| 28 | 23 27 | bitrdi |  |-  ( ph -> ( u e. S <-> u e. ( T i^i ~P B ) ) ) | 
						
							| 29 | 28 | eqrdv |  |-  ( ph -> S = ( T i^i ~P B ) ) |