| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsslss.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) |
| 2 |
|
lsslss.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lsslss.t |
⊢ 𝑇 = ( LSubSp ‘ 𝑋 ) |
| 4 |
1 2
|
lsslmod |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 5 |
|
eqid |
⊢ ( 𝑋 ↾s 𝑉 ) = ( 𝑋 ↾s 𝑉 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 7 |
5 6 3
|
islss3 |
⊢ ( 𝑋 ∈ LMod → ( 𝑉 ∈ 𝑇 ↔ ( 𝑉 ⊆ ( Base ‘ 𝑋 ) ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 8 |
4 7
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑉 ∈ 𝑇 ↔ ( 𝑉 ⊆ ( Base ‘ 𝑋 ) ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 10 |
9 2
|
lssss |
⊢ ( 𝑈 ∈ 𝑆 → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 12 |
1 9
|
ressbas2 |
⊢ ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 14 |
13
|
sseq2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑉 ⊆ 𝑈 ↔ 𝑉 ⊆ ( Base ‘ 𝑋 ) ) ) |
| 15 |
14
|
anbi1d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑉 ⊆ 𝑈 ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ↔ ( 𝑉 ⊆ ( Base ‘ 𝑋 ) ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 16 |
|
sstr2 |
⊢ ( 𝑉 ⊆ 𝑈 → ( 𝑈 ⊆ ( Base ‘ 𝑊 ) → 𝑉 ⊆ ( Base ‘ 𝑊 ) ) ) |
| 17 |
11 16
|
mpan9 |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → 𝑉 ⊆ ( Base ‘ 𝑊 ) ) |
| 18 |
17
|
biantrurd |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑊 ↾s 𝑉 ) ∈ LMod ↔ ( 𝑉 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 19 |
1
|
oveq1i |
⊢ ( 𝑋 ↾s 𝑉 ) = ( ( 𝑊 ↾s 𝑈 ) ↾s 𝑉 ) |
| 20 |
|
ressabs |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑊 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝑊 ↾s 𝑉 ) ) |
| 21 |
20
|
adantll |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑊 ↾s 𝑈 ) ↾s 𝑉 ) = ( 𝑊 ↾s 𝑉 ) ) |
| 22 |
19 21
|
eqtrid |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑋 ↾s 𝑉 ) = ( 𝑊 ↾s 𝑉 ) ) |
| 23 |
22
|
eleq1d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑋 ↾s 𝑉 ) ∈ LMod ↔ ( 𝑊 ↾s 𝑉 ) ∈ LMod ) ) |
| 24 |
|
eqid |
⊢ ( 𝑊 ↾s 𝑉 ) = ( 𝑊 ↾s 𝑉 ) |
| 25 |
24 9 2
|
islss3 |
⊢ ( 𝑊 ∈ LMod → ( 𝑉 ∈ 𝑆 ↔ ( 𝑉 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( 𝑉 ∈ 𝑆 ↔ ( 𝑉 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊 ↾s 𝑉 ) ∈ LMod ) ) ) |
| 27 |
18 23 26
|
3bitr4d |
⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ 𝑉 ⊆ 𝑈 ) → ( ( 𝑋 ↾s 𝑉 ) ∈ LMod ↔ 𝑉 ∈ 𝑆 ) ) |
| 28 |
27
|
pm5.32da |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑉 ⊆ 𝑈 ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ↔ ( 𝑉 ⊆ 𝑈 ∧ 𝑉 ∈ 𝑆 ) ) ) |
| 29 |
28
|
biancomd |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑉 ⊆ 𝑈 ∧ ( 𝑋 ↾s 𝑉 ) ∈ LMod ) ↔ ( 𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ) ) ) |
| 30 |
8 15 29
|
3bitr2d |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑉 ∈ 𝑇 ↔ ( 𝑉 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑈 ) ) ) |