Metamath Proof Explorer


Theorem lsslss

Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lsslss.x X = W 𝑠 U
lsslss.s S = LSubSp W
lsslss.t T = LSubSp X
Assertion lsslss W LMod U S V T V S V U

Proof

Step Hyp Ref Expression
1 lsslss.x X = W 𝑠 U
2 lsslss.s S = LSubSp W
3 lsslss.t T = LSubSp X
4 1 2 lsslmod W LMod U S X LMod
5 eqid X 𝑠 V = X 𝑠 V
6 eqid Base X = Base X
7 5 6 3 islss3 X LMod V T V Base X X 𝑠 V LMod
8 4 7 syl W LMod U S V T V Base X X 𝑠 V LMod
9 eqid Base W = Base W
10 9 2 lssss U S U Base W
11 10 adantl W LMod U S U Base W
12 1 9 ressbas2 U Base W U = Base X
13 11 12 syl W LMod U S U = Base X
14 13 sseq2d W LMod U S V U V Base X
15 14 anbi1d W LMod U S V U X 𝑠 V LMod V Base X X 𝑠 V LMod
16 sstr2 V U U Base W V Base W
17 11 16 mpan9 W LMod U S V U V Base W
18 17 biantrurd W LMod U S V U W 𝑠 V LMod V Base W W 𝑠 V LMod
19 1 oveq1i X 𝑠 V = W 𝑠 U 𝑠 V
20 ressabs U S V U W 𝑠 U 𝑠 V = W 𝑠 V
21 20 adantll W LMod U S V U W 𝑠 U 𝑠 V = W 𝑠 V
22 19 21 syl5eq W LMod U S V U X 𝑠 V = W 𝑠 V
23 22 eleq1d W LMod U S V U X 𝑠 V LMod W 𝑠 V LMod
24 eqid W 𝑠 V = W 𝑠 V
25 24 9 2 islss3 W LMod V S V Base W W 𝑠 V LMod
26 25 ad2antrr W LMod U S V U V S V Base W W 𝑠 V LMod
27 18 23 26 3bitr4d W LMod U S V U X 𝑠 V LMod V S
28 27 pm5.32da W LMod U S V U X 𝑠 V LMod V U V S
29 28 biancomd W LMod U S V U X 𝑠 V LMod V S V U
30 8 15 29 3bitr2d W LMod U S V T V S V U