| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdvsubval.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lcdvsubval.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | lcdvsubval.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | lcdvsubval.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | lcdvsubval.s |  |-  S = ( -g ` R ) | 
						
							| 6 |  | lcdvsubval.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 7 |  | lcdvsubval.d |  |-  D = ( Base ` C ) | 
						
							| 8 |  | lcdvsubval.m |  |-  .- = ( -g ` C ) | 
						
							| 9 |  | lcdvsubval.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | lcdvsubval.f |  |-  ( ph -> F e. D ) | 
						
							| 11 |  | lcdvsubval.g |  |-  ( ph -> G e. D ) | 
						
							| 12 |  | lcdvsubval.x |  |-  ( ph -> X e. V ) | 
						
							| 13 | 1 6 9 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 14 |  | eqid |  |-  ( +g ` C ) = ( +g ` C ) | 
						
							| 15 |  | eqid |  |-  ( Scalar ` C ) = ( Scalar ` C ) | 
						
							| 16 |  | eqid |  |-  ( .s ` C ) = ( .s ` C ) | 
						
							| 17 |  | eqid |  |-  ( invg ` ( Scalar ` C ) ) = ( invg ` ( Scalar ` C ) ) | 
						
							| 18 |  | eqid |  |-  ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( Scalar ` C ) ) | 
						
							| 19 | 7 14 8 15 16 17 18 | lmodvsubval2 |  |-  ( ( C e. LMod /\ F e. D /\ G e. D ) -> ( F .- G ) = ( F ( +g ` C ) ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ) ) | 
						
							| 20 | 13 10 11 19 | syl3anc |  |-  ( ph -> ( F .- G ) = ( F ( +g ` C ) ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ) ) | 
						
							| 21 | 20 | fveq1d |  |-  ( ph -> ( ( F .- G ) ` X ) = ( ( F ( +g ` C ) ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ) ` X ) ) | 
						
							| 22 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 23 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 24 | 15 | lmodfgrp |  |-  ( C e. LMod -> ( Scalar ` C ) e. Grp ) | 
						
							| 25 | 13 24 | syl |  |-  ( ph -> ( Scalar ` C ) e. Grp ) | 
						
							| 26 | 15 | lmodring |  |-  ( C e. LMod -> ( Scalar ` C ) e. Ring ) | 
						
							| 27 | 13 26 | syl |  |-  ( ph -> ( Scalar ` C ) e. Ring ) | 
						
							| 28 |  | eqid |  |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) | 
						
							| 29 | 28 18 | ringidcl |  |-  ( ( Scalar ` C ) e. Ring -> ( 1r ` ( Scalar ` C ) ) e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 30 | 27 29 | syl |  |-  ( ph -> ( 1r ` ( Scalar ` C ) ) e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 31 | 28 17 | grpinvcl |  |-  ( ( ( Scalar ` C ) e. Grp /\ ( 1r ` ( Scalar ` C ) ) e. ( Base ` ( Scalar ` C ) ) ) -> ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 32 | 25 30 31 | syl2anc |  |-  ( ph -> ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 33 | 1 2 4 23 6 15 28 9 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` C ) ) = ( Base ` R ) ) | 
						
							| 34 | 32 33 | eleqtrd |  |-  ( ph -> ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) e. ( Base ` R ) ) | 
						
							| 35 | 1 2 4 23 6 7 16 9 34 11 | lcdvscl |  |-  ( ph -> ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) e. D ) | 
						
							| 36 | 1 2 3 4 22 6 7 14 9 10 35 12 | lcdvaddval |  |-  ( ph -> ( ( F ( +g ` C ) ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ) ` X ) = ( ( F ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) ) ) | 
						
							| 37 |  | eqid |  |-  ( invg ` R ) = ( invg ` R ) | 
						
							| 38 | 1 2 4 37 6 15 17 9 | lcdneg |  |-  ( ph -> ( invg ` ( Scalar ` C ) ) = ( invg ` R ) ) | 
						
							| 39 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 40 | 1 2 4 39 6 15 18 9 | lcd1 |  |-  ( ph -> ( 1r ` ( Scalar ` C ) ) = ( 1r ` R ) ) | 
						
							| 41 | 38 40 | fveq12d |  |-  ( ph -> ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ph -> ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) = ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` C ) G ) ) | 
						
							| 43 | 42 | fveq1d |  |-  ( ph -> ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) = ( ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` C ) G ) ` X ) ) | 
						
							| 44 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 45 | 1 2 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 46 | 4 | lmodring |  |-  ( U e. LMod -> R e. Ring ) | 
						
							| 47 | 45 46 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 48 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 49 | 47 48 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 50 | 4 23 39 | lmod1cl |  |-  ( U e. LMod -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 51 | 45 50 | syl |  |-  ( ph -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 52 | 23 37 | grpinvcl |  |-  ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) | 
						
							| 53 | 49 51 52 | syl2anc |  |-  ( ph -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) | 
						
							| 54 | 1 2 3 4 23 44 6 7 16 9 53 11 12 | lcdvsval |  |-  ( ph -> ( ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` C ) G ) ` X ) = ( ( G ` X ) ( .r ` R ) ( ( invg ` R ) ` ( 1r ` R ) ) ) ) | 
						
							| 55 | 1 2 3 4 23 6 7 9 11 12 | lcdvbasecl |  |-  ( ph -> ( G ` X ) e. ( Base ` R ) ) | 
						
							| 56 | 23 44 39 37 47 55 | ringnegr |  |-  ( ph -> ( ( G ` X ) ( .r ` R ) ( ( invg ` R ) ` ( 1r ` R ) ) ) = ( ( invg ` R ) ` ( G ` X ) ) ) | 
						
							| 57 | 43 54 56 | 3eqtrd |  |-  ( ph -> ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) = ( ( invg ` R ) ` ( G ` X ) ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ph -> ( ( F ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) ) = ( ( F ` X ) ( +g ` R ) ( ( invg ` R ) ` ( G ` X ) ) ) ) | 
						
							| 59 | 1 2 3 4 23 6 7 9 10 12 | lcdvbasecl |  |-  ( ph -> ( F ` X ) e. ( Base ` R ) ) | 
						
							| 60 | 23 22 37 5 | grpsubval |  |-  ( ( ( F ` X ) e. ( Base ` R ) /\ ( G ` X ) e. ( Base ` R ) ) -> ( ( F ` X ) S ( G ` X ) ) = ( ( F ` X ) ( +g ` R ) ( ( invg ` R ) ` ( G ` X ) ) ) ) | 
						
							| 61 | 59 55 60 | syl2anc |  |-  ( ph -> ( ( F ` X ) S ( G ` X ) ) = ( ( F ` X ) ( +g ` R ) ( ( invg ` R ) ` ( G ` X ) ) ) ) | 
						
							| 62 | 58 61 | eqtr4d |  |-  ( ph -> ( ( F ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) ) = ( ( F ` X ) S ( G ` X ) ) ) | 
						
							| 63 | 21 36 62 | 3eqtrd |  |-  ( ph -> ( ( F .- G ) ` X ) = ( ( F ` X ) S ( G ` X ) ) ) |