Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvsubval.h |
|- H = ( LHyp ` K ) |
2 |
|
lcdvsubval.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcdvsubval.v |
|- V = ( Base ` U ) |
4 |
|
lcdvsubval.r |
|- R = ( Scalar ` U ) |
5 |
|
lcdvsubval.s |
|- S = ( -g ` R ) |
6 |
|
lcdvsubval.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
lcdvsubval.d |
|- D = ( Base ` C ) |
8 |
|
lcdvsubval.m |
|- .- = ( -g ` C ) |
9 |
|
lcdvsubval.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
lcdvsubval.f |
|- ( ph -> F e. D ) |
11 |
|
lcdvsubval.g |
|- ( ph -> G e. D ) |
12 |
|
lcdvsubval.x |
|- ( ph -> X e. V ) |
13 |
1 6 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
14 |
|
eqid |
|- ( +g ` C ) = ( +g ` C ) |
15 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
16 |
|
eqid |
|- ( .s ` C ) = ( .s ` C ) |
17 |
|
eqid |
|- ( invg ` ( Scalar ` C ) ) = ( invg ` ( Scalar ` C ) ) |
18 |
|
eqid |
|- ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( Scalar ` C ) ) |
19 |
7 14 8 15 16 17 18
|
lmodvsubval2 |
|- ( ( C e. LMod /\ F e. D /\ G e. D ) -> ( F .- G ) = ( F ( +g ` C ) ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ) ) |
20 |
13 10 11 19
|
syl3anc |
|- ( ph -> ( F .- G ) = ( F ( +g ` C ) ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ) ) |
21 |
20
|
fveq1d |
|- ( ph -> ( ( F .- G ) ` X ) = ( ( F ( +g ` C ) ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ) ` X ) ) |
22 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
24 |
15
|
lmodfgrp |
|- ( C e. LMod -> ( Scalar ` C ) e. Grp ) |
25 |
13 24
|
syl |
|- ( ph -> ( Scalar ` C ) e. Grp ) |
26 |
15
|
lmodring |
|- ( C e. LMod -> ( Scalar ` C ) e. Ring ) |
27 |
13 26
|
syl |
|- ( ph -> ( Scalar ` C ) e. Ring ) |
28 |
|
eqid |
|- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
29 |
28 18
|
ringidcl |
|- ( ( Scalar ` C ) e. Ring -> ( 1r ` ( Scalar ` C ) ) e. ( Base ` ( Scalar ` C ) ) ) |
30 |
27 29
|
syl |
|- ( ph -> ( 1r ` ( Scalar ` C ) ) e. ( Base ` ( Scalar ` C ) ) ) |
31 |
28 17
|
grpinvcl |
|- ( ( ( Scalar ` C ) e. Grp /\ ( 1r ` ( Scalar ` C ) ) e. ( Base ` ( Scalar ` C ) ) ) -> ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) e. ( Base ` ( Scalar ` C ) ) ) |
32 |
25 30 31
|
syl2anc |
|- ( ph -> ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) e. ( Base ` ( Scalar ` C ) ) ) |
33 |
1 2 4 23 6 15 28 9
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` C ) ) = ( Base ` R ) ) |
34 |
32 33
|
eleqtrd |
|- ( ph -> ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) e. ( Base ` R ) ) |
35 |
1 2 4 23 6 7 16 9 34 11
|
lcdvscl |
|- ( ph -> ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) e. D ) |
36 |
1 2 3 4 22 6 7 14 9 10 35 12
|
lcdvaddval |
|- ( ph -> ( ( F ( +g ` C ) ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ) ` X ) = ( ( F ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) ) ) |
37 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
38 |
1 2 4 37 6 15 17 9
|
lcdneg |
|- ( ph -> ( invg ` ( Scalar ` C ) ) = ( invg ` R ) ) |
39 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
40 |
1 2 4 39 6 15 18 9
|
lcd1 |
|- ( ph -> ( 1r ` ( Scalar ` C ) ) = ( 1r ` R ) ) |
41 |
38 40
|
fveq12d |
|- ( ph -> ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
42 |
41
|
oveq1d |
|- ( ph -> ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) = ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` C ) G ) ) |
43 |
42
|
fveq1d |
|- ( ph -> ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) = ( ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` C ) G ) ` X ) ) |
44 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
45 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
46 |
4
|
lmodring |
|- ( U e. LMod -> R e. Ring ) |
47 |
45 46
|
syl |
|- ( ph -> R e. Ring ) |
48 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
49 |
47 48
|
syl |
|- ( ph -> R e. Grp ) |
50 |
4 23 39
|
lmod1cl |
|- ( U e. LMod -> ( 1r ` R ) e. ( Base ` R ) ) |
51 |
45 50
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
52 |
23 37
|
grpinvcl |
|- ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) |
53 |
49 51 52
|
syl2anc |
|- ( ph -> ( ( invg ` R ) ` ( 1r ` R ) ) e. ( Base ` R ) ) |
54 |
1 2 3 4 23 44 6 7 16 9 53 11 12
|
lcdvsval |
|- ( ph -> ( ( ( ( invg ` R ) ` ( 1r ` R ) ) ( .s ` C ) G ) ` X ) = ( ( G ` X ) ( .r ` R ) ( ( invg ` R ) ` ( 1r ` R ) ) ) ) |
55 |
1 2 3 4 23 6 7 9 11 12
|
lcdvbasecl |
|- ( ph -> ( G ` X ) e. ( Base ` R ) ) |
56 |
23 44 39 37 47 55
|
rngnegr |
|- ( ph -> ( ( G ` X ) ( .r ` R ) ( ( invg ` R ) ` ( 1r ` R ) ) ) = ( ( invg ` R ) ` ( G ` X ) ) ) |
57 |
43 54 56
|
3eqtrd |
|- ( ph -> ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) = ( ( invg ` R ) ` ( G ` X ) ) ) |
58 |
57
|
oveq2d |
|- ( ph -> ( ( F ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) ) = ( ( F ` X ) ( +g ` R ) ( ( invg ` R ) ` ( G ` X ) ) ) ) |
59 |
1 2 3 4 23 6 7 9 10 12
|
lcdvbasecl |
|- ( ph -> ( F ` X ) e. ( Base ` R ) ) |
60 |
23 22 37 5
|
grpsubval |
|- ( ( ( F ` X ) e. ( Base ` R ) /\ ( G ` X ) e. ( Base ` R ) ) -> ( ( F ` X ) S ( G ` X ) ) = ( ( F ` X ) ( +g ` R ) ( ( invg ` R ) ` ( G ` X ) ) ) ) |
61 |
59 55 60
|
syl2anc |
|- ( ph -> ( ( F ` X ) S ( G ` X ) ) = ( ( F ` X ) ( +g ` R ) ( ( invg ` R ) ` ( G ` X ) ) ) ) |
62 |
58 61
|
eqtr4d |
|- ( ph -> ( ( F ` X ) ( +g ` R ) ( ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ( .s ` C ) G ) ` X ) ) = ( ( F ` X ) S ( G ` X ) ) ) |
63 |
21 36 62
|
3eqtrd |
|- ( ph -> ( ( F .- G ) ` X ) = ( ( F ` X ) S ( G ` X ) ) ) |