| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdvsub.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lcdvsub.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | lcdvsub.s |  |-  S = ( Scalar ` U ) | 
						
							| 4 |  | lcdvsub.n |  |-  N = ( invg ` S ) | 
						
							| 5 |  | lcdvsub.e |  |-  .1. = ( 1r ` S ) | 
						
							| 6 |  | lcdvsub.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 7 |  | lcdvsub.v |  |-  V = ( Base ` C ) | 
						
							| 8 |  | lcdvsub.p |  |-  .+ = ( +g ` C ) | 
						
							| 9 |  | lcdvsub.t |  |-  .x. = ( .s ` C ) | 
						
							| 10 |  | lcdvsub.m |  |-  .- = ( -g ` C ) | 
						
							| 11 |  | lcdvsub.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | lcdvsub.f |  |-  ( ph -> F e. V ) | 
						
							| 13 |  | lcdvsub.g |  |-  ( ph -> G e. V ) | 
						
							| 14 | 1 6 11 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 15 |  | eqid |  |-  ( Scalar ` C ) = ( Scalar ` C ) | 
						
							| 16 |  | eqid |  |-  ( invg ` ( Scalar ` C ) ) = ( invg ` ( Scalar ` C ) ) | 
						
							| 17 |  | eqid |  |-  ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( Scalar ` C ) ) | 
						
							| 18 | 7 8 10 15 9 16 17 | lmodvsubval2 |  |-  ( ( C e. LMod /\ F e. V /\ G e. V ) -> ( F .- G ) = ( F .+ ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) .x. G ) ) ) | 
						
							| 19 | 14 12 13 18 | syl3anc |  |-  ( ph -> ( F .- G ) = ( F .+ ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) .x. G ) ) ) | 
						
							| 20 |  | eqid |  |-  ( oppR ` S ) = ( oppR ` S ) | 
						
							| 21 | 20 4 | opprneg |  |-  N = ( invg ` ( oppR ` S ) ) | 
						
							| 22 | 1 2 3 20 6 15 11 | lcdsca |  |-  ( ph -> ( Scalar ` C ) = ( oppR ` S ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( invg ` ( Scalar ` C ) ) = ( invg ` ( oppR ` S ) ) ) | 
						
							| 24 | 21 23 | eqtr4id |  |-  ( ph -> N = ( invg ` ( Scalar ` C ) ) ) | 
						
							| 25 | 20 5 | oppr1 |  |-  .1. = ( 1r ` ( oppR ` S ) ) | 
						
							| 26 | 22 | fveq2d |  |-  ( ph -> ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( oppR ` S ) ) ) | 
						
							| 27 | 25 26 | eqtr4id |  |-  ( ph -> .1. = ( 1r ` ( Scalar ` C ) ) ) | 
						
							| 28 | 24 27 | fveq12d |  |-  ( ph -> ( N ` .1. ) = ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( ph -> ( ( N ` .1. ) .x. G ) = ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) .x. G ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ph -> ( F .+ ( ( N ` .1. ) .x. G ) ) = ( F .+ ( ( ( invg ` ( Scalar ` C ) ) ` ( 1r ` ( Scalar ` C ) ) ) .x. G ) ) ) | 
						
							| 31 | 19 30 | eqtr4d |  |-  ( ph -> ( F .- G ) = ( F .+ ( ( N ` .1. ) .x. G ) ) ) |