Metamath Proof Explorer


Theorem lcdvs0N

Description: A scalar times the zero functional is the zero functional. (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdvs0.h
|- H = ( LHyp ` K )
lcdvs0.u
|- U = ( ( DVecH ` K ) ` W )
lcdvs0.s
|- S = ( Scalar ` U )
lcdvs0.r
|- R = ( Base ` S )
lcdvs0.c
|- C = ( ( LCDual ` K ) ` W )
lcdvs0.t
|- .x. = ( .s ` C )
lcdvs0.o
|- .0. = ( 0g ` C )
lcdvs0.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdvs0.x
|- ( ph -> X e. R )
Assertion lcdvs0N
|- ( ph -> ( X .x. .0. ) = .0. )

Proof

Step Hyp Ref Expression
1 lcdvs0.h
 |-  H = ( LHyp ` K )
2 lcdvs0.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdvs0.s
 |-  S = ( Scalar ` U )
4 lcdvs0.r
 |-  R = ( Base ` S )
5 lcdvs0.c
 |-  C = ( ( LCDual ` K ) ` W )
6 lcdvs0.t
 |-  .x. = ( .s ` C )
7 lcdvs0.o
 |-  .0. = ( 0g ` C )
8 lcdvs0.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 lcdvs0.x
 |-  ( ph -> X e. R )
10 1 5 8 lcdlmod
 |-  ( ph -> C e. LMod )
11 eqid
 |-  ( Scalar ` C ) = ( Scalar ` C )
12 eqid
 |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) )
13 1 2 3 4 5 11 12 8 lcdsbase
 |-  ( ph -> ( Base ` ( Scalar ` C ) ) = R )
14 9 13 eleqtrrd
 |-  ( ph -> X e. ( Base ` ( Scalar ` C ) ) )
15 11 6 12 7 lmodvs0
 |-  ( ( C e. LMod /\ X e. ( Base ` ( Scalar ` C ) ) ) -> ( X .x. .0. ) = .0. )
16 10 14 15 syl2anc
 |-  ( ph -> ( X .x. .0. ) = .0. )