Step |
Hyp |
Ref |
Expression |
1 |
|
lcdvs0.h |
|- H = ( LHyp ` K ) |
2 |
|
lcdvs0.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
lcdvs0.s |
|- S = ( Scalar ` U ) |
4 |
|
lcdvs0.r |
|- R = ( Base ` S ) |
5 |
|
lcdvs0.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
lcdvs0.t |
|- .x. = ( .s ` C ) |
7 |
|
lcdvs0.o |
|- .0. = ( 0g ` C ) |
8 |
|
lcdvs0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
lcdvs0.x |
|- ( ph -> X e. R ) |
10 |
1 5 8
|
lcdlmod |
|- ( ph -> C e. LMod ) |
11 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
12 |
|
eqid |
|- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
13 |
1 2 3 4 5 11 12 8
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` C ) ) = R ) |
14 |
9 13
|
eleqtrrd |
|- ( ph -> X e. ( Base ` ( Scalar ` C ) ) ) |
15 |
11 6 12 7
|
lmodvs0 |
|- ( ( C e. LMod /\ X e. ( Base ` ( Scalar ` C ) ) ) -> ( X .x. .0. ) = .0. ) |
16 |
10 14 15
|
syl2anc |
|- ( ph -> ( X .x. .0. ) = .0. ) |