Metamath Proof Explorer


Theorem mapdat

Description: Atoms are preserved by the map defined by df-mapd . Property (g) in Baer p. 41. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses mapdat.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdat.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
mapdat.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdat.b 𝐵 = ( LSAtoms ‘ 𝐶 )
mapdat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdat.q ( 𝜑𝑄𝐴 )
Assertion mapdat ( 𝜑 → ( 𝑀𝑄 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 mapdat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdat.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
5 mapdat.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 mapdat.b 𝐵 = ( LSAtoms ‘ 𝐶 )
7 mapdat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 mapdat.q ( 𝜑𝑄𝐴 )
9 eqid ( 0g𝑈 ) = ( 0g𝑈 )
10 eqid ( 0g𝐶 ) = ( 0g𝐶 )
11 1 2 3 9 5 10 7 mapd0 ( 𝜑 → ( 𝑀 ‘ { ( 0g𝑈 ) } ) = { ( 0g𝐶 ) } )
12 eqid ( ⋖L𝑈 ) = ( ⋖L𝑈 )
13 1 3 7 dvhlvec ( 𝜑𝑈 ∈ LVec )
14 9 4 12 13 8 lsatcv0 ( 𝜑 → { ( 0g𝑈 ) } ( ⋖L𝑈 ) 𝑄 )
15 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
16 eqid ( ⋖L𝐶 ) = ( ⋖L𝐶 )
17 1 3 7 dvhlmod ( 𝜑𝑈 ∈ LMod )
18 9 15 lsssn0 ( 𝑈 ∈ LMod → { ( 0g𝑈 ) } ∈ ( LSubSp ‘ 𝑈 ) )
19 17 18 syl ( 𝜑 → { ( 0g𝑈 ) } ∈ ( LSubSp ‘ 𝑈 ) )
20 15 4 17 8 lsatlssel ( 𝜑𝑄 ∈ ( LSubSp ‘ 𝑈 ) )
21 1 2 3 15 12 5 16 7 19 20 mapdcv ( 𝜑 → ( { ( 0g𝑈 ) } ( ⋖L𝑈 ) 𝑄 ↔ ( 𝑀 ‘ { ( 0g𝑈 ) } ) ( ⋖L𝐶 ) ( 𝑀𝑄 ) ) )
22 14 21 mpbid ( 𝜑 → ( 𝑀 ‘ { ( 0g𝑈 ) } ) ( ⋖L𝐶 ) ( 𝑀𝑄 ) )
23 11 22 eqbrtrrd ( 𝜑 → { ( 0g𝐶 ) } ( ⋖L𝐶 ) ( 𝑀𝑄 ) )
24 eqid ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 )
25 1 5 7 lcdlvec ( 𝜑𝐶 ∈ LVec )
26 1 2 3 15 5 24 7 20 mapdcl2 ( 𝜑 → ( 𝑀𝑄 ) ∈ ( LSubSp ‘ 𝐶 ) )
27 10 24 6 16 25 26 lsat0cv ( 𝜑 → ( ( 𝑀𝑄 ) ∈ 𝐵 ↔ { ( 0g𝐶 ) } ( ⋖L𝐶 ) ( 𝑀𝑄 ) ) )
28 23 27 mpbird ( 𝜑 → ( 𝑀𝑄 ) ∈ 𝐵 )