| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdat.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdat.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdat.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdat.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 5 |  | mapdat.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | mapdat.b | ⊢ 𝐵  =  ( LSAtoms ‘ 𝐶 ) | 
						
							| 7 |  | mapdat.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 |  | mapdat.q | ⊢ ( 𝜑  →  𝑄  ∈  𝐴 ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 11 | 1 2 3 9 5 10 7 | mapd0 | ⊢ ( 𝜑  →  ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } )  =  { ( 0g ‘ 𝐶 ) } ) | 
						
							| 12 |  | eqid | ⊢ (  ⋖L  ‘ 𝑈 )  =  (  ⋖L  ‘ 𝑈 ) | 
						
							| 13 | 1 3 7 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 14 | 9 4 12 13 8 | lsatcv0 | ⊢ ( 𝜑  →  { ( 0g ‘ 𝑈 ) } (  ⋖L  ‘ 𝑈 ) 𝑄 ) | 
						
							| 15 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 16 |  | eqid | ⊢ (  ⋖L  ‘ 𝐶 )  =  (  ⋖L  ‘ 𝐶 ) | 
						
							| 17 | 1 3 7 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 18 | 9 15 | lsssn0 | ⊢ ( 𝑈  ∈  LMod  →  { ( 0g ‘ 𝑈 ) }  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  { ( 0g ‘ 𝑈 ) }  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 20 | 15 4 17 8 | lsatlssel | ⊢ ( 𝜑  →  𝑄  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 21 | 1 2 3 15 12 5 16 7 19 20 | mapdcv | ⊢ ( 𝜑  →  ( { ( 0g ‘ 𝑈 ) } (  ⋖L  ‘ 𝑈 ) 𝑄  ↔  ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) (  ⋖L  ‘ 𝐶 ) ( 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 22 | 14 21 | mpbid | ⊢ ( 𝜑  →  ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) (  ⋖L  ‘ 𝐶 ) ( 𝑀 ‘ 𝑄 ) ) | 
						
							| 23 | 11 22 | eqbrtrrd | ⊢ ( 𝜑  →  { ( 0g ‘ 𝐶 ) } (  ⋖L  ‘ 𝐶 ) ( 𝑀 ‘ 𝑄 ) ) | 
						
							| 24 |  | eqid | ⊢ ( LSubSp ‘ 𝐶 )  =  ( LSubSp ‘ 𝐶 ) | 
						
							| 25 | 1 5 7 | lcdlvec | ⊢ ( 𝜑  →  𝐶  ∈  LVec ) | 
						
							| 26 | 1 2 3 15 5 24 7 20 | mapdcl2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑄 )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 27 | 10 24 6 16 25 26 | lsat0cv | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑄 )  ∈  𝐵  ↔  { ( 0g ‘ 𝐶 ) } (  ⋖L  ‘ 𝐶 ) ( 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 28 | 23 27 | mpbird | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑄 )  ∈  𝐵 ) |