Step |
Hyp |
Ref |
Expression |
1 |
|
mapdat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdat.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
5 |
|
mapdat.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
mapdat.b |
⊢ 𝐵 = ( LSAtoms ‘ 𝐶 ) |
7 |
|
mapdat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
mapdat.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
11 |
1 2 3 9 5 10 7
|
mapd0 |
⊢ ( 𝜑 → ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) = { ( 0g ‘ 𝐶 ) } ) |
12 |
|
eqid |
⊢ ( ⋖L ‘ 𝑈 ) = ( ⋖L ‘ 𝑈 ) |
13 |
1 3 7
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
14 |
9 4 12 13 8
|
lsatcv0 |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } ( ⋖L ‘ 𝑈 ) 𝑄 ) |
15 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( ⋖L ‘ 𝐶 ) = ( ⋖L ‘ 𝐶 ) |
17 |
1 3 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
9 15
|
lsssn0 |
⊢ ( 𝑈 ∈ LMod → { ( 0g ‘ 𝑈 ) } ∈ ( LSubSp ‘ 𝑈 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } ∈ ( LSubSp ‘ 𝑈 ) ) |
20 |
15 4 17 8
|
lsatlssel |
⊢ ( 𝜑 → 𝑄 ∈ ( LSubSp ‘ 𝑈 ) ) |
21 |
1 2 3 15 12 5 16 7 19 20
|
mapdcv |
⊢ ( 𝜑 → ( { ( 0g ‘ 𝑈 ) } ( ⋖L ‘ 𝑈 ) 𝑄 ↔ ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) ( ⋖L ‘ 𝐶 ) ( 𝑀 ‘ 𝑄 ) ) ) |
22 |
14 21
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ‘ { ( 0g ‘ 𝑈 ) } ) ( ⋖L ‘ 𝐶 ) ( 𝑀 ‘ 𝑄 ) ) |
23 |
11 22
|
eqbrtrrd |
⊢ ( 𝜑 → { ( 0g ‘ 𝐶 ) } ( ⋖L ‘ 𝐶 ) ( 𝑀 ‘ 𝑄 ) ) |
24 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
25 |
1 5 7
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
26 |
1 2 3 15 5 24 7 20
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝐶 ) ) |
27 |
10 24 6 16 25 26
|
lsat0cv |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑄 ) ∈ 𝐵 ↔ { ( 0g ‘ 𝐶 ) } ( ⋖L ‘ 𝐶 ) ( 𝑀 ‘ 𝑄 ) ) ) |
28 |
23 27
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑄 ) ∈ 𝐵 ) |