Metamath Proof Explorer


Theorem mapdat

Description: Atoms are preserved by the map defined by df-mapd . Property (g) in Baer p. 41. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses mapdat.h H = LHyp K
mapdat.m M = mapd K W
mapdat.u U = DVecH K W
mapdat.a A = LSAtoms U
mapdat.c C = LCDual K W
mapdat.b B = LSAtoms C
mapdat.k φ K HL W H
mapdat.q φ Q A
Assertion mapdat φ M Q B

Proof

Step Hyp Ref Expression
1 mapdat.h H = LHyp K
2 mapdat.m M = mapd K W
3 mapdat.u U = DVecH K W
4 mapdat.a A = LSAtoms U
5 mapdat.c C = LCDual K W
6 mapdat.b B = LSAtoms C
7 mapdat.k φ K HL W H
8 mapdat.q φ Q A
9 eqid 0 U = 0 U
10 eqid 0 C = 0 C
11 1 2 3 9 5 10 7 mapd0 φ M 0 U = 0 C
12 eqid L U = L U
13 1 3 7 dvhlvec φ U LVec
14 9 4 12 13 8 lsatcv0 φ 0 U L U Q
15 eqid LSubSp U = LSubSp U
16 eqid L C = L C
17 1 3 7 dvhlmod φ U LMod
18 9 15 lsssn0 U LMod 0 U LSubSp U
19 17 18 syl φ 0 U LSubSp U
20 15 4 17 8 lsatlssel φ Q LSubSp U
21 1 2 3 15 12 5 16 7 19 20 mapdcv φ 0 U L U Q M 0 U L C M Q
22 14 21 mpbid φ M 0 U L C M Q
23 11 22 eqbrtrrd φ 0 C L C M Q
24 eqid LSubSp C = LSubSp C
25 1 5 7 lcdlvec φ C LVec
26 1 2 3 15 5 24 7 20 mapdcl2 φ M Q LSubSp C
27 10 24 6 16 25 26 lsat0cv φ M Q B 0 C L C M Q
28 23 27 mpbird φ M Q B