Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdindp.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdindp.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdindp.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdindp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
mapdindp.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
mapdindp.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
mapdindp.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
9 |
|
mapdindp.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
mapdindp.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
11 |
|
mapdindp.mx |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
12 |
|
mapdn0.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
13 |
|
mapdn0.z |
⊢ 𝑍 = ( 0g ‘ 𝐶 ) |
14 |
|
mapdn0.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
15 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
17 |
|
sneq |
⊢ ( 𝐹 = 𝑍 → { 𝐹 } = { 𝑍 } ) |
18 |
17
|
fveq2d |
⊢ ( 𝐹 = 𝑍 → ( 𝐽 ‘ { 𝐹 } ) = ( 𝐽 ‘ { 𝑍 } ) ) |
19 |
11 18
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝑍 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝑍 } ) ) |
20 |
1 2 3 12 6 13 9
|
mapd0 |
⊢ ( 𝜑 → ( 𝑀 ‘ { 0 } ) = { 𝑍 } ) |
21 |
1 6 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
22 |
13 8
|
lspsn0 |
⊢ ( 𝐶 ∈ LMod → ( 𝐽 ‘ { 𝑍 } ) = { 𝑍 } ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( 𝐽 ‘ { 𝑍 } ) = { 𝑍 } ) |
24 |
20 23
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ { 0 } ) = ( 𝐽 ‘ { 𝑍 } ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝑍 ) → ( 𝑀 ‘ { 0 } ) = ( 𝐽 ‘ { 𝑍 } ) ) |
26 |
19 25
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝑍 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { 0 } ) ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( 𝐹 = 𝑍 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { 0 } ) ) ) |
28 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
29 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
30 |
14
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
31 |
4 28 5
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
32 |
29 30 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
33 |
12 28
|
lsssn0 |
⊢ ( 𝑈 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑈 ) ) |
34 |
29 33
|
syl |
⊢ ( 𝜑 → { 0 } ∈ ( LSubSp ‘ 𝑈 ) ) |
35 |
1 3 28 2 9 32 34
|
mapd11 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { 0 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) ) |
36 |
4 12 5
|
lspsneq0 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
37 |
29 30 36
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) ) |
38 |
35 37
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { 0 } ) ↔ 𝑋 = 0 ) ) |
39 |
27 38
|
sylibd |
⊢ ( 𝜑 → ( 𝐹 = 𝑍 → 𝑋 = 0 ) ) |
40 |
39
|
necon3d |
⊢ ( 𝜑 → ( 𝑋 ≠ 0 → 𝐹 ≠ 𝑍 ) ) |
41 |
16 40
|
mpd |
⊢ ( 𝜑 → 𝐹 ≠ 𝑍 ) |
42 |
|
eldifsn |
⊢ ( 𝐹 ∈ ( 𝐷 ∖ { 𝑍 } ) ↔ ( 𝐹 ∈ 𝐷 ∧ 𝐹 ≠ 𝑍 ) ) |
43 |
10 41 42
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐷 ∖ { 𝑍 } ) ) |