Metamath Proof Explorer


Theorem mapdn0

Description: Transfer nonzero property from domain to range of projectivity mapd . (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdindp.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdindp.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdindp.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdindp.v 𝑉 = ( Base ‘ 𝑈 )
mapdindp.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdindp.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdindp.d 𝐷 = ( Base ‘ 𝐶 )
mapdindp.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdindp.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdindp.f ( 𝜑𝐹𝐷 )
mapdindp.mx ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdn0.o 0 = ( 0g𝑈 )
mapdn0.z 𝑍 = ( 0g𝐶 )
mapdn0.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion mapdn0 ( 𝜑𝐹 ∈ ( 𝐷 ∖ { 𝑍 } ) )

Proof

Step Hyp Ref Expression
1 mapdindp.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdindp.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdindp.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdindp.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdindp.n 𝑁 = ( LSpan ‘ 𝑈 )
6 mapdindp.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 mapdindp.d 𝐷 = ( Base ‘ 𝐶 )
8 mapdindp.j 𝐽 = ( LSpan ‘ 𝐶 )
9 mapdindp.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 mapdindp.f ( 𝜑𝐹𝐷 )
11 mapdindp.mx ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
12 mapdn0.o 0 = ( 0g𝑈 )
13 mapdn0.z 𝑍 = ( 0g𝐶 )
14 mapdn0.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
15 eldifsni ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) → 𝑋0 )
16 14 15 syl ( 𝜑𝑋0 )
17 sneq ( 𝐹 = 𝑍 → { 𝐹 } = { 𝑍 } )
18 17 fveq2d ( 𝐹 = 𝑍 → ( 𝐽 ‘ { 𝐹 } ) = ( 𝐽 ‘ { 𝑍 } ) )
19 11 18 sylan9eq ( ( 𝜑𝐹 = 𝑍 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝑍 } ) )
20 1 2 3 12 6 13 9 mapd0 ( 𝜑 → ( 𝑀 ‘ { 0 } ) = { 𝑍 } )
21 1 6 9 lcdlmod ( 𝜑𝐶 ∈ LMod )
22 13 8 lspsn0 ( 𝐶 ∈ LMod → ( 𝐽 ‘ { 𝑍 } ) = { 𝑍 } )
23 21 22 syl ( 𝜑 → ( 𝐽 ‘ { 𝑍 } ) = { 𝑍 } )
24 20 23 eqtr4d ( 𝜑 → ( 𝑀 ‘ { 0 } ) = ( 𝐽 ‘ { 𝑍 } ) )
25 24 adantr ( ( 𝜑𝐹 = 𝑍 ) → ( 𝑀 ‘ { 0 } ) = ( 𝐽 ‘ { 𝑍 } ) )
26 19 25 eqtr4d ( ( 𝜑𝐹 = 𝑍 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { 0 } ) )
27 26 ex ( 𝜑 → ( 𝐹 = 𝑍 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { 0 } ) ) )
28 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
29 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
30 14 eldifad ( 𝜑𝑋𝑉 )
31 4 28 5 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) )
32 29 30 31 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) )
33 12 28 lsssn0 ( 𝑈 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑈 ) )
34 29 33 syl ( 𝜑 → { 0 } ∈ ( LSubSp ‘ 𝑈 ) )
35 1 3 28 2 9 32 34 mapd11 ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { 0 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) = { 0 } ) )
36 4 12 5 lspsneq0 ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉 ) → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) )
37 29 30 36 syl2anc ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = { 0 } ↔ 𝑋 = 0 ) )
38 35 37 bitrd ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ { 0 } ) ↔ 𝑋 = 0 ) )
39 27 38 sylibd ( 𝜑 → ( 𝐹 = 𝑍𝑋 = 0 ) )
40 39 necon3d ( 𝜑 → ( 𝑋0𝐹𝑍 ) )
41 16 40 mpd ( 𝜑𝐹𝑍 )
42 eldifsn ( 𝐹 ∈ ( 𝐷 ∖ { 𝑍 } ) ↔ ( 𝐹𝐷𝐹𝑍 ) )
43 10 41 42 sylanbrc ( 𝜑𝐹 ∈ ( 𝐷 ∖ { 𝑍 } ) )