Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdindp.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdindp.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdindp.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdindp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
mapdindp.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
mapdindp.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
8 |
|
mapdindp.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
9 |
|
mapdindp.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
mapdindp.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
11 |
|
mapdindp.mx |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
12 |
|
mapdindp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
13 |
|
mapdindp.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
14 |
|
mapdindp.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
15 |
|
mapdindp.my |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
16 |
|
mapdncol.q |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
18 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
19 |
4 17 5
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
20 |
18 12 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
21 |
4 17 5
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
22 |
18 13 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
23 |
1 3 17 2 9 20 22
|
mapd11 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
24 |
23
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ≠ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
25 |
16 24
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ≠ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
26 |
25 11 15
|
3netr3d |
⊢ ( 𝜑 → ( 𝐽 ‘ { 𝐹 } ) ≠ ( 𝐽 ‘ { 𝐺 } ) ) |