Metamath Proof Explorer


Theorem mapdncol

Description: Transfer non-colinearity from domain to range of projectivity mapd . (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses mapdindp.h H=LHypK
mapdindp.m M=mapdKW
mapdindp.u U=DVecHKW
mapdindp.v V=BaseU
mapdindp.n N=LSpanU
mapdindp.c C=LCDualKW
mapdindp.d D=BaseC
mapdindp.j J=LSpanC
mapdindp.k φKHLWH
mapdindp.f φFD
mapdindp.mx φMNX=JF
mapdindp.x φXV
mapdindp.y φYV
mapdindp.g φGD
mapdindp.my φMNY=JG
mapdncol.q φNXNY
Assertion mapdncol φJFJG

Proof

Step Hyp Ref Expression
1 mapdindp.h H=LHypK
2 mapdindp.m M=mapdKW
3 mapdindp.u U=DVecHKW
4 mapdindp.v V=BaseU
5 mapdindp.n N=LSpanU
6 mapdindp.c C=LCDualKW
7 mapdindp.d D=BaseC
8 mapdindp.j J=LSpanC
9 mapdindp.k φKHLWH
10 mapdindp.f φFD
11 mapdindp.mx φMNX=JF
12 mapdindp.x φXV
13 mapdindp.y φYV
14 mapdindp.g φGD
15 mapdindp.my φMNY=JG
16 mapdncol.q φNXNY
17 eqid LSubSpU=LSubSpU
18 1 3 9 dvhlmod φULMod
19 4 17 5 lspsncl ULModXVNXLSubSpU
20 18 12 19 syl2anc φNXLSubSpU
21 4 17 5 lspsncl ULModYVNYLSubSpU
22 18 13 21 syl2anc φNYLSubSpU
23 1 3 17 2 9 20 22 mapd11 φMNX=MNYNX=NY
24 23 necon3bid φMNXMNYNXNY
25 16 24 mpbird φMNXMNY
26 25 11 15 3netr3d φJFJG