| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdindp.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdindp.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdindp.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdindp.v |
|- V = ( Base ` U ) |
| 5 |
|
mapdindp.n |
|- N = ( LSpan ` U ) |
| 6 |
|
mapdindp.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 7 |
|
mapdindp.d |
|- D = ( Base ` C ) |
| 8 |
|
mapdindp.j |
|- J = ( LSpan ` C ) |
| 9 |
|
mapdindp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
mapdindp.f |
|- ( ph -> F e. D ) |
| 11 |
|
mapdindp.mx |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 12 |
|
mapdindp.x |
|- ( ph -> X e. V ) |
| 13 |
|
mapdindp.y |
|- ( ph -> Y e. V ) |
| 14 |
|
mapdindp.g |
|- ( ph -> G e. D ) |
| 15 |
|
mapdindp.my |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
| 16 |
|
mapdncol.q |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 17 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 18 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 19 |
4 17 5
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 20 |
18 12 19
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 21 |
4 17 5
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 22 |
18 13 21
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 23 |
1 3 17 2 9 20 22
|
mapd11 |
|- ( ph -> ( ( M ` ( N ` { X } ) ) = ( M ` ( N ` { Y } ) ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 24 |
23
|
necon3bid |
|- ( ph -> ( ( M ` ( N ` { X } ) ) =/= ( M ` ( N ` { Y } ) ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
| 25 |
16 24
|
mpbird |
|- ( ph -> ( M ` ( N ` { X } ) ) =/= ( M ` ( N ` { Y } ) ) ) |
| 26 |
25 11 15
|
3netr3d |
|- ( ph -> ( J ` { F } ) =/= ( J ` { G } ) ) |