Metamath Proof Explorer


Theorem mapdncol

Description: Transfer non-colinearity from domain to range of projectivity mapd . (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses mapdindp.h
|- H = ( LHyp ` K )
mapdindp.m
|- M = ( ( mapd ` K ) ` W )
mapdindp.u
|- U = ( ( DVecH ` K ) ` W )
mapdindp.v
|- V = ( Base ` U )
mapdindp.n
|- N = ( LSpan ` U )
mapdindp.c
|- C = ( ( LCDual ` K ) ` W )
mapdindp.d
|- D = ( Base ` C )
mapdindp.j
|- J = ( LSpan ` C )
mapdindp.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdindp.f
|- ( ph -> F e. D )
mapdindp.mx
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
mapdindp.x
|- ( ph -> X e. V )
mapdindp.y
|- ( ph -> Y e. V )
mapdindp.g
|- ( ph -> G e. D )
mapdindp.my
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) )
mapdncol.q
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
Assertion mapdncol
|- ( ph -> ( J ` { F } ) =/= ( J ` { G } ) )

Proof

Step Hyp Ref Expression
1 mapdindp.h
 |-  H = ( LHyp ` K )
2 mapdindp.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdindp.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdindp.v
 |-  V = ( Base ` U )
5 mapdindp.n
 |-  N = ( LSpan ` U )
6 mapdindp.c
 |-  C = ( ( LCDual ` K ) ` W )
7 mapdindp.d
 |-  D = ( Base ` C )
8 mapdindp.j
 |-  J = ( LSpan ` C )
9 mapdindp.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 mapdindp.f
 |-  ( ph -> F e. D )
11 mapdindp.mx
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
12 mapdindp.x
 |-  ( ph -> X e. V )
13 mapdindp.y
 |-  ( ph -> Y e. V )
14 mapdindp.g
 |-  ( ph -> G e. D )
15 mapdindp.my
 |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) )
16 mapdncol.q
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
17 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
18 1 3 9 dvhlmod
 |-  ( ph -> U e. LMod )
19 4 17 5 lspsncl
 |-  ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) )
20 18 12 19 syl2anc
 |-  ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) )
21 4 17 5 lspsncl
 |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) )
22 18 13 21 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) )
23 1 3 17 2 9 20 22 mapd11
 |-  ( ph -> ( ( M ` ( N ` { X } ) ) = ( M ` ( N ` { Y } ) ) <-> ( N ` { X } ) = ( N ` { Y } ) ) )
24 23 necon3bid
 |-  ( ph -> ( ( M ` ( N ` { X } ) ) =/= ( M ` ( N ` { Y } ) ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) )
25 16 24 mpbird
 |-  ( ph -> ( M ` ( N ` { X } ) ) =/= ( M ` ( N ` { Y } ) ) )
26 25 11 15 3netr3d
 |-  ( ph -> ( J ` { F } ) =/= ( J ` { G } ) )