Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdindp.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdindp.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdindp.v |
|- V = ( Base ` U ) |
5 |
|
mapdindp.n |
|- N = ( LSpan ` U ) |
6 |
|
mapdindp.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
mapdindp.d |
|- D = ( Base ` C ) |
8 |
|
mapdindp.j |
|- J = ( LSpan ` C ) |
9 |
|
mapdindp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
mapdindp.f |
|- ( ph -> F e. D ) |
11 |
|
mapdindp.mx |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
12 |
|
mapdindp.x |
|- ( ph -> X e. V ) |
13 |
|
mapdindp.y |
|- ( ph -> Y e. V ) |
14 |
|
mapdindp.g |
|- ( ph -> G e. D ) |
15 |
|
mapdindp.my |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
16 |
|
mapdindp.z |
|- ( ph -> Z e. V ) |
17 |
|
mapdindp.e |
|- ( ph -> E e. D ) |
18 |
|
mapdindp.mg |
|- ( ph -> ( M ` ( N ` { Z } ) ) = ( J ` { E } ) ) |
19 |
|
mapdindp.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
20 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
21 |
1 6 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
22 |
7 20 8 21 14 17
|
lspprcl |
|- ( ph -> ( J ` { G , E } ) e. ( LSubSp ` C ) ) |
23 |
7 20 8 21 22 10
|
lspsnel5 |
|- ( ph -> ( F e. ( J ` { G , E } ) <-> ( J ` { F } ) C_ ( J ` { G , E } ) ) ) |
24 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
25 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
26 |
4 24 5 25 13 16
|
lspprcl |
|- ( ph -> ( N ` { Y , Z } ) e. ( LSubSp ` U ) ) |
27 |
4 24 5 25 26 12
|
lspsnel5 |
|- ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
28 |
4 24 5
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
29 |
25 12 28
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
30 |
1 3 24 2 9 29 26
|
mapdord |
|- ( ph -> ( ( M ` ( N ` { X } ) ) C_ ( M ` ( N ` { Y , Z } ) ) <-> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
31 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
32 |
4 5 31 25 13 16
|
lsmpr |
|- ( ph -> ( N ` { Y , Z } ) = ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) |
33 |
32
|
fveq2d |
|- ( ph -> ( M ` ( N ` { Y , Z } ) ) = ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) ) |
34 |
|
eqid |
|- ( LSSum ` C ) = ( LSSum ` C ) |
35 |
4 24 5
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
36 |
25 13 35
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
37 |
4 24 5
|
lspsncl |
|- ( ( U e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
38 |
25 16 37
|
syl2anc |
|- ( ph -> ( N ` { Z } ) e. ( LSubSp ` U ) ) |
39 |
1 2 3 24 31 6 34 9 36 38
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { Y } ) ( LSSum ` U ) ( N ` { Z } ) ) ) = ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) ) |
40 |
15 18
|
oveq12d |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) ( LSSum ` C ) ( M ` ( N ` { Z } ) ) ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
41 |
33 39 40
|
3eqtrd |
|- ( ph -> ( M ` ( N ` { Y , Z } ) ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
42 |
7 8 34 21 14 17
|
lsmpr |
|- ( ph -> ( J ` { G , E } ) = ( ( J ` { G } ) ( LSSum ` C ) ( J ` { E } ) ) ) |
43 |
41 42
|
eqtr4d |
|- ( ph -> ( M ` ( N ` { Y , Z } ) ) = ( J ` { G , E } ) ) |
44 |
11 43
|
sseq12d |
|- ( ph -> ( ( M ` ( N ` { X } ) ) C_ ( M ` ( N ` { Y , Z } ) ) <-> ( J ` { F } ) C_ ( J ` { G , E } ) ) ) |
45 |
27 30 44
|
3bitr2rd |
|- ( ph -> ( ( J ` { F } ) C_ ( J ` { G , E } ) <-> X e. ( N ` { Y , Z } ) ) ) |
46 |
23 45
|
bitrd |
|- ( ph -> ( F e. ( J ` { G , E } ) <-> X e. ( N ` { Y , Z } ) ) ) |
47 |
19 46
|
mtbird |
|- ( ph -> -. F e. ( J ` { G , E } ) ) |