| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdindp.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdindp.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdindp.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
mapdindp.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
mapdindp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 6 |
|
mapdindp.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
mapdindp.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 8 |
|
mapdindp.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 9 |
|
mapdindp.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
mapdindp.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 11 |
|
mapdindp.mx |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 12 |
|
mapdindp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 13 |
|
mapdindp.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 14 |
|
mapdindp.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
| 15 |
|
mapdindp.my |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
| 16 |
|
mapdindp.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 17 |
|
mapdindp.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐷 ) |
| 18 |
|
mapdindp.mg |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐽 ‘ { 𝐸 } ) ) |
| 19 |
|
mapdindp.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 20 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
| 21 |
1 6 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 22 |
7 20 8 21 14 17
|
lspprcl |
⊢ ( 𝜑 → ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 23 |
7 20 8 21 22 10
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ↔ ( 𝐽 ‘ { 𝐹 } ) ⊆ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ) ) |
| 24 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 25 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 26 |
4 24 5 25 13 16
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 27 |
4 24 5 25 26 12
|
ellspsn5b |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 28 |
4 24 5
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 29 |
25 12 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 30 |
1 3 24 2 9 29 26
|
mapdord |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 31 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
| 32 |
4 5 31 25 13 16
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) ) |
| 34 |
|
eqid |
⊢ ( LSSum ‘ 𝐶 ) = ( LSSum ‘ 𝐶 ) |
| 35 |
4 24 5
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 36 |
25 13 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 37 |
4 24 5
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 38 |
25 16 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 39 |
1 2 3 24 31 6 34 9 36 38
|
mapdlsm |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) = ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) ) |
| 40 |
15 18
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) = ( ( 𝐽 ‘ { 𝐺 } ) ( LSSum ‘ 𝐶 ) ( 𝐽 ‘ { 𝐸 } ) ) ) |
| 41 |
33 39 40
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = ( ( 𝐽 ‘ { 𝐺 } ) ( LSSum ‘ 𝐶 ) ( 𝐽 ‘ { 𝐸 } ) ) ) |
| 42 |
7 8 34 21 14 17
|
lsmpr |
⊢ ( 𝜑 → ( 𝐽 ‘ { 𝐺 , 𝐸 } ) = ( ( 𝐽 ‘ { 𝐺 } ) ( LSSum ‘ 𝐶 ) ( 𝐽 ‘ { 𝐸 } ) ) ) |
| 43 |
41 42
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ) |
| 44 |
11 43
|
sseq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ↔ ( 𝐽 ‘ { 𝐹 } ) ⊆ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ) ) |
| 45 |
27 30 44
|
3bitr2rd |
⊢ ( 𝜑 → ( ( 𝐽 ‘ { 𝐹 } ) ⊆ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 46 |
23 45
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 47 |
19 46
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐹 ∈ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ) |