Metamath Proof Explorer


Theorem mapdindp

Description: Transfer (part of) vector independence condition from domain to range of projectivity mapd . (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses mapdindp.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdindp.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdindp.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdindp.v 𝑉 = ( Base ‘ 𝑈 )
mapdindp.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdindp.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdindp.d 𝐷 = ( Base ‘ 𝐶 )
mapdindp.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdindp.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdindp.f ( 𝜑𝐹𝐷 )
mapdindp.mx ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdindp.x ( 𝜑𝑋𝑉 )
mapdindp.y ( 𝜑𝑌𝑉 )
mapdindp.g ( 𝜑𝐺𝐷 )
mapdindp.my ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
mapdindp.z ( 𝜑𝑍𝑉 )
mapdindp.e ( 𝜑𝐸𝐷 )
mapdindp.mg ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐽 ‘ { 𝐸 } ) )
mapdindp.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
Assertion mapdindp ( 𝜑 → ¬ 𝐹 ∈ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) )

Proof

Step Hyp Ref Expression
1 mapdindp.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdindp.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdindp.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdindp.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdindp.n 𝑁 = ( LSpan ‘ 𝑈 )
6 mapdindp.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
7 mapdindp.d 𝐷 = ( Base ‘ 𝐶 )
8 mapdindp.j 𝐽 = ( LSpan ‘ 𝐶 )
9 mapdindp.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 mapdindp.f ( 𝜑𝐹𝐷 )
11 mapdindp.mx ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
12 mapdindp.x ( 𝜑𝑋𝑉 )
13 mapdindp.y ( 𝜑𝑌𝑉 )
14 mapdindp.g ( 𝜑𝐺𝐷 )
15 mapdindp.my ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
16 mapdindp.z ( 𝜑𝑍𝑉 )
17 mapdindp.e ( 𝜑𝐸𝐷 )
18 mapdindp.mg ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐽 ‘ { 𝐸 } ) )
19 mapdindp.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
20 eqid ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 )
21 1 6 9 lcdlmod ( 𝜑𝐶 ∈ LMod )
22 7 20 8 21 14 17 lspprcl ( 𝜑 → ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ∈ ( LSubSp ‘ 𝐶 ) )
23 7 20 8 21 22 10 lspsnel5 ( 𝜑 → ( 𝐹 ∈ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ↔ ( 𝐽 ‘ { 𝐹 } ) ⊆ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ) )
24 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
25 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
26 4 24 5 25 13 16 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) )
27 4 24 5 25 26 12 lspsnel5 ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) )
28 4 24 5 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) )
29 25 12 28 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) )
30 1 3 24 2 9 29 26 mapdord ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) )
31 eqid ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 )
32 4 5 31 25 13 16 lsmpr ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) )
33 32 fveq2d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) )
34 eqid ( LSSum ‘ 𝐶 ) = ( LSSum ‘ 𝐶 )
35 4 24 5 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
36 25 13 35 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
37 4 24 5 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑍𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) )
38 25 16 37 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑈 ) )
39 1 2 3 24 31 6 34 9 36 38 mapdlsm ( 𝜑 → ( 𝑀 ‘ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑈 ) ( 𝑁 ‘ { 𝑍 } ) ) ) = ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) )
40 15 18 oveq12d ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) ) = ( ( 𝐽 ‘ { 𝐺 } ) ( LSSum ‘ 𝐶 ) ( 𝐽 ‘ { 𝐸 } ) ) )
41 33 39 40 3eqtrd ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = ( ( 𝐽 ‘ { 𝐺 } ) ( LSSum ‘ 𝐶 ) ( 𝐽 ‘ { 𝐸 } ) ) )
42 7 8 34 21 14 17 lsmpr ( 𝜑 → ( 𝐽 ‘ { 𝐺 , 𝐸 } ) = ( ( 𝐽 ‘ { 𝐺 } ) ( LSSum ‘ 𝐶 ) ( 𝐽 ‘ { 𝐸 } ) ) )
43 41 42 eqtr4d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) = ( 𝐽 ‘ { 𝐺 , 𝐸 } ) )
44 11 43 sseq12d ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ↔ ( 𝐽 ‘ { 𝐹 } ) ⊆ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ) )
45 27 30 44 3bitr2rd ( 𝜑 → ( ( 𝐽 ‘ { 𝐹 } ) ⊆ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) )
46 23 45 bitrd ( 𝜑 → ( 𝐹 ∈ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) )
47 19 46 mtbird ( 𝜑 → ¬ 𝐹 ∈ ( 𝐽 ‘ { 𝐺 , 𝐸 } ) )