Step |
Hyp |
Ref |
Expression |
1 |
|
mapdindp.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdindp.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdindp.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdindp.v |
|- V = ( Base ` U ) |
5 |
|
mapdindp.n |
|- N = ( LSpan ` U ) |
6 |
|
mapdindp.c |
|- C = ( ( LCDual ` K ) ` W ) |
7 |
|
mapdindp.d |
|- D = ( Base ` C ) |
8 |
|
mapdindp.j |
|- J = ( LSpan ` C ) |
9 |
|
mapdindp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
mapdindp.f |
|- ( ph -> F e. D ) |
11 |
|
mapdindp.mx |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
12 |
|
mapdn0.o |
|- .0. = ( 0g ` U ) |
13 |
|
mapdn0.z |
|- Z = ( 0g ` C ) |
14 |
|
mapdn0.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
15 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
16 |
14 15
|
syl |
|- ( ph -> X =/= .0. ) |
17 |
|
sneq |
|- ( F = Z -> { F } = { Z } ) |
18 |
17
|
fveq2d |
|- ( F = Z -> ( J ` { F } ) = ( J ` { Z } ) ) |
19 |
11 18
|
sylan9eq |
|- ( ( ph /\ F = Z ) -> ( M ` ( N ` { X } ) ) = ( J ` { Z } ) ) |
20 |
1 2 3 12 6 13 9
|
mapd0 |
|- ( ph -> ( M ` { .0. } ) = { Z } ) |
21 |
1 6 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
22 |
13 8
|
lspsn0 |
|- ( C e. LMod -> ( J ` { Z } ) = { Z } ) |
23 |
21 22
|
syl |
|- ( ph -> ( J ` { Z } ) = { Z } ) |
24 |
20 23
|
eqtr4d |
|- ( ph -> ( M ` { .0. } ) = ( J ` { Z } ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ F = Z ) -> ( M ` { .0. } ) = ( J ` { Z } ) ) |
26 |
19 25
|
eqtr4d |
|- ( ( ph /\ F = Z ) -> ( M ` ( N ` { X } ) ) = ( M ` { .0. } ) ) |
27 |
26
|
ex |
|- ( ph -> ( F = Z -> ( M ` ( N ` { X } ) ) = ( M ` { .0. } ) ) ) |
28 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
29 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
30 |
14
|
eldifad |
|- ( ph -> X e. V ) |
31 |
4 28 5
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
32 |
29 30 31
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
33 |
12 28
|
lsssn0 |
|- ( U e. LMod -> { .0. } e. ( LSubSp ` U ) ) |
34 |
29 33
|
syl |
|- ( ph -> { .0. } e. ( LSubSp ` U ) ) |
35 |
1 3 28 2 9 32 34
|
mapd11 |
|- ( ph -> ( ( M ` ( N ` { X } ) ) = ( M ` { .0. } ) <-> ( N ` { X } ) = { .0. } ) ) |
36 |
4 12 5
|
lspsneq0 |
|- ( ( U e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
37 |
29 30 36
|
syl2anc |
|- ( ph -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
38 |
35 37
|
bitrd |
|- ( ph -> ( ( M ` ( N ` { X } ) ) = ( M ` { .0. } ) <-> X = .0. ) ) |
39 |
27 38
|
sylibd |
|- ( ph -> ( F = Z -> X = .0. ) ) |
40 |
39
|
necon3d |
|- ( ph -> ( X =/= .0. -> F =/= Z ) ) |
41 |
16 40
|
mpd |
|- ( ph -> F =/= Z ) |
42 |
|
eldifsn |
|- ( F e. ( D \ { Z } ) <-> ( F e. D /\ F =/= Z ) ) |
43 |
10 41 42
|
sylanbrc |
|- ( ph -> F e. ( D \ { Z } ) ) |