Metamath Proof Explorer


Theorem mapdcnvid2

Description: Value of the converse of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdcnvid2.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdcnvid2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdcnvid2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdcnvid2.x ( 𝜑𝑋 ∈ ran 𝑀 )
Assertion mapdcnvid2 ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝑋 ) ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 mapdcnvid2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdcnvid2.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdcnvid2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 mapdcnvid2.x ( 𝜑𝑋 ∈ ran 𝑀 )
5 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
8 eqid ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
9 eqid ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
10 eqid ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
11 eqid ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
12 eqid { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } = { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) }
13 1 5 2 6 7 8 9 10 11 12 3 mapd1o ( 𝜑𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } ) )
14 f1of1 ( 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } ) → 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1→ ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } ) )
15 f1f1orn ( 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1→ ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } ) → 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ran 𝑀 )
16 13 14 15 3syl ( 𝜑𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ran 𝑀 )
17 f1ocnvfv2 ( ( 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ran 𝑀𝑋 ∈ ran 𝑀 ) → ( 𝑀 ‘ ( 𝑀𝑋 ) ) = 𝑋 )
18 16 4 17 syl2anc ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝑋 ) ) = 𝑋 )