Step |
Hyp |
Ref |
Expression |
1 |
|
mapdcnvid2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdcnvid2.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdcnvid2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
4 |
|
mapdcnvid2.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝑀 ) |
5 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
eqid |
⊢ ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
8 |
|
eqid |
⊢ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
10 |
|
eqid |
⊢ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
11 |
|
eqid |
⊢ ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
12 |
|
eqid |
⊢ { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } = { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } |
13 |
1 5 2 6 7 8 9 10 11 12 3
|
mapd1o |
⊢ ( 𝜑 → 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } ) ) |
14 |
|
f1of1 |
⊢ ( 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } ) → 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1→ ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } ) ) |
15 |
|
f1f1orn |
⊢ ( 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1→ ( ( LSubSp ‘ ( LDual ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ∩ 𝒫 { 𝑔 ∈ ( LFnl ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) ) ) = ( ( LKer ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ 𝑔 ) } ) → 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ran 𝑀 ) |
16 |
13 14 15
|
3syl |
⊢ ( 𝜑 → 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ran 𝑀 ) |
17 |
|
f1ocnvfv2 |
⊢ ( ( 𝑀 : ( LSubSp ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) –1-1-onto→ ran 𝑀 ∧ 𝑋 ∈ ran 𝑀 ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑋 ) ) = 𝑋 ) |
18 |
16 4 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝑋 ) ) = 𝑋 ) |