Metamath Proof Explorer


Theorem mapdcnvid2

Description: Value of the converse of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdcnvid2.h H=LHypK
mapdcnvid2.m M=mapdKW
mapdcnvid2.k φKHLWH
mapdcnvid2.x φXranM
Assertion mapdcnvid2 φMM-1X=X

Proof

Step Hyp Ref Expression
1 mapdcnvid2.h H=LHypK
2 mapdcnvid2.m M=mapdKW
3 mapdcnvid2.k φKHLWH
4 mapdcnvid2.x φXranM
5 eqid ocHKW=ocHKW
6 eqid DVecHKW=DVecHKW
7 eqid LSubSpDVecHKW=LSubSpDVecHKW
8 eqid LFnlDVecHKW=LFnlDVecHKW
9 eqid LKerDVecHKW=LKerDVecHKW
10 eqid LDualDVecHKW=LDualDVecHKW
11 eqid LSubSpLDualDVecHKW=LSubSpLDualDVecHKW
12 eqid gLFnlDVecHKW|ocHKWocHKWLKerDVecHKWg=LKerDVecHKWg=gLFnlDVecHKW|ocHKWocHKWLKerDVecHKWg=LKerDVecHKWg
13 1 5 2 6 7 8 9 10 11 12 3 mapd1o φM:LSubSpDVecHKW1-1 ontoLSubSpLDualDVecHKW𝒫gLFnlDVecHKW|ocHKWocHKWLKerDVecHKWg=LKerDVecHKWg
14 f1of1 M:LSubSpDVecHKW1-1 ontoLSubSpLDualDVecHKW𝒫gLFnlDVecHKW|ocHKWocHKWLKerDVecHKWg=LKerDVecHKWgM:LSubSpDVecHKW1-1LSubSpLDualDVecHKW𝒫gLFnlDVecHKW|ocHKWocHKWLKerDVecHKWg=LKerDVecHKWg
15 f1f1orn M:LSubSpDVecHKW1-1LSubSpLDualDVecHKW𝒫gLFnlDVecHKW|ocHKWocHKWLKerDVecHKWg=LKerDVecHKWgM:LSubSpDVecHKW1-1 ontoranM
16 13 14 15 3syl φM:LSubSpDVecHKW1-1 ontoranM
17 f1ocnvfv2 M:LSubSpDVecHKW1-1 ontoranMXranMMM-1X=X
18 16 4 17 syl2anc φMM-1X=X