Metamath Proof Explorer


Theorem mapdlsmcl

Description: Closure of dual subspace sum for the map defined by df-mapd . (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdlsmcl.h H=LHypK
mapdlsmcl.m M=mapdKW
mapdlsmcl.u U=DVecHKW
mapdlsmcl.c C=LCDualKW
mapdlsmcl.p ˙=LSSumC
mapdlsmcl.k φKHLWH
mapdlsmcl.x φXranM
mapdlsmcl.y φYranM
Assertion mapdlsmcl φX˙YranM

Proof

Step Hyp Ref Expression
1 mapdlsmcl.h H=LHypK
2 mapdlsmcl.m M=mapdKW
3 mapdlsmcl.u U=DVecHKW
4 mapdlsmcl.c C=LCDualKW
5 mapdlsmcl.p ˙=LSSumC
6 mapdlsmcl.k φKHLWH
7 mapdlsmcl.x φXranM
8 mapdlsmcl.y φYranM
9 1 4 6 lcdlmod φCLMod
10 eqid LSubSpC=LSubSpC
11 1 2 4 10 6 mapdrn2 φranM=LSubSpC
12 7 11 eleqtrd φXLSubSpC
13 8 11 eleqtrd φYLSubSpC
14 10 5 lsmcl CLModXLSubSpCYLSubSpCX˙YLSubSpC
15 9 12 13 14 syl3anc φX˙YLSubSpC
16 15 11 eleqtrrd φX˙YranM