| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdin.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdin.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdin.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdin.s |
|- S = ( LSubSp ` U ) |
| 5 |
|
mapdin.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
mapdin.x |
|- ( ph -> X e. S ) |
| 7 |
|
mapdin.y |
|- ( ph -> Y e. S ) |
| 8 |
|
inss1 |
|- ( X i^i Y ) C_ X |
| 9 |
1 3 5
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 10 |
4
|
lssincl |
|- ( ( U e. LMod /\ X e. S /\ Y e. S ) -> ( X i^i Y ) e. S ) |
| 11 |
9 6 7 10
|
syl3anc |
|- ( ph -> ( X i^i Y ) e. S ) |
| 12 |
1 3 4 2 5 11 6
|
mapdord |
|- ( ph -> ( ( M ` ( X i^i Y ) ) C_ ( M ` X ) <-> ( X i^i Y ) C_ X ) ) |
| 13 |
8 12
|
mpbiri |
|- ( ph -> ( M ` ( X i^i Y ) ) C_ ( M ` X ) ) |
| 14 |
|
inss2 |
|- ( X i^i Y ) C_ Y |
| 15 |
1 3 4 2 5 11 7
|
mapdord |
|- ( ph -> ( ( M ` ( X i^i Y ) ) C_ ( M ` Y ) <-> ( X i^i Y ) C_ Y ) ) |
| 16 |
14 15
|
mpbiri |
|- ( ph -> ( M ` ( X i^i Y ) ) C_ ( M ` Y ) ) |
| 17 |
13 16
|
ssind |
|- ( ph -> ( M ` ( X i^i Y ) ) C_ ( ( M ` X ) i^i ( M ` Y ) ) ) |
| 18 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
| 19 |
|
eqid |
|- ( LSubSp ` ( ( LCDual ` K ) ` W ) ) = ( LSubSp ` ( ( LCDual ` K ) ` W ) ) |
| 20 |
1 2 3 4 18 19 5 6
|
mapdcl2 |
|- ( ph -> ( M ` X ) e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
| 21 |
1 2 18 19 5
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
| 22 |
20 21
|
eleqtrrd |
|- ( ph -> ( M ` X ) e. ran M ) |
| 23 |
1 2 3 4 18 19 5 7
|
mapdcl2 |
|- ( ph -> ( M ` Y ) e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
| 24 |
23 21
|
eleqtrrd |
|- ( ph -> ( M ` Y ) e. ran M ) |
| 25 |
1 2 3 18 5 22 24
|
mapdincl |
|- ( ph -> ( ( M ` X ) i^i ( M ` Y ) ) e. ran M ) |
| 26 |
1 2 5 25
|
mapdcnvid2 |
|- ( ph -> ( M ` ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) ) = ( ( M ` X ) i^i ( M ` Y ) ) ) |
| 27 |
|
inss1 |
|- ( ( M ` X ) i^i ( M ` Y ) ) C_ ( M ` X ) |
| 28 |
26 27
|
eqsstrdi |
|- ( ph -> ( M ` ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) ) C_ ( M ` X ) ) |
| 29 |
1 18 5
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
| 30 |
19
|
lssincl |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( M ` X ) e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) /\ ( M ` Y ) e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) -> ( ( M ` X ) i^i ( M ` Y ) ) e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
| 31 |
29 20 23 30
|
syl3anc |
|- ( ph -> ( ( M ` X ) i^i ( M ` Y ) ) e. ( LSubSp ` ( ( LCDual ` K ) ` W ) ) ) |
| 32 |
31 21
|
eleqtrrd |
|- ( ph -> ( ( M ` X ) i^i ( M ` Y ) ) e. ran M ) |
| 33 |
1 2 3 4 5 32
|
mapdcnvcl |
|- ( ph -> ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) e. S ) |
| 34 |
1 3 4 2 5 33 6
|
mapdord |
|- ( ph -> ( ( M ` ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) ) C_ ( M ` X ) <-> ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) C_ X ) ) |
| 35 |
28 34
|
mpbid |
|- ( ph -> ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) C_ X ) |
| 36 |
1 2 5 32
|
mapdcnvid2 |
|- ( ph -> ( M ` ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) ) = ( ( M ` X ) i^i ( M ` Y ) ) ) |
| 37 |
|
inss2 |
|- ( ( M ` X ) i^i ( M ` Y ) ) C_ ( M ` Y ) |
| 38 |
36 37
|
eqsstrdi |
|- ( ph -> ( M ` ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) ) C_ ( M ` Y ) ) |
| 39 |
1 3 4 2 5 33 7
|
mapdord |
|- ( ph -> ( ( M ` ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) ) C_ ( M ` Y ) <-> ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) C_ Y ) ) |
| 40 |
38 39
|
mpbid |
|- ( ph -> ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) C_ Y ) |
| 41 |
35 40
|
ssind |
|- ( ph -> ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) C_ ( X i^i Y ) ) |
| 42 |
1 3 4 2 5 33 11
|
mapdord |
|- ( ph -> ( ( M ` ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) ) C_ ( M ` ( X i^i Y ) ) <-> ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) C_ ( X i^i Y ) ) ) |
| 43 |
41 42
|
mpbird |
|- ( ph -> ( M ` ( `' M ` ( ( M ` X ) i^i ( M ` Y ) ) ) ) C_ ( M ` ( X i^i Y ) ) ) |
| 44 |
26 43
|
eqsstrrd |
|- ( ph -> ( ( M ` X ) i^i ( M ` Y ) ) C_ ( M ` ( X i^i Y ) ) ) |
| 45 |
17 44
|
eqssd |
|- ( ph -> ( M ` ( X i^i Y ) ) = ( ( M ` X ) i^i ( M ` Y ) ) ) |