Metamath Proof Explorer


Theorem mapdincl

Description: Closure of dual subspace intersection for the map defined by df-mapd . (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdincl.h H = LHyp K
mapdincl.m M = mapd K W
mapdincl.u U = DVecH K W
mapdincl.c C = LCDual K W
mapdincl.k φ K HL W H
mapdincl.x φ X ran M
mapdincl.y φ Y ran M
Assertion mapdincl φ X Y ran M

Proof

Step Hyp Ref Expression
1 mapdincl.h H = LHyp K
2 mapdincl.m M = mapd K W
3 mapdincl.u U = DVecH K W
4 mapdincl.c C = LCDual K W
5 mapdincl.k φ K HL W H
6 mapdincl.x φ X ran M
7 mapdincl.y φ Y ran M
8 eqid LCDual K W = LCDual K W
9 1 8 5 lcdlmod φ LCDual K W LMod
10 eqid LSubSp LCDual K W = LSubSp LCDual K W
11 1 2 8 10 5 mapdrn2 φ ran M = LSubSp LCDual K W
12 6 11 eleqtrd φ X LSubSp LCDual K W
13 7 11 eleqtrd φ Y LSubSp LCDual K W
14 10 lssincl LCDual K W LMod X LSubSp LCDual K W Y LSubSp LCDual K W X Y LSubSp LCDual K W
15 9 12 13 14 syl3anc φ X Y LSubSp LCDual K W
16 15 11 eleqtrrd φ X Y ran M