Metamath Proof Explorer


Theorem hdmaprnN

Description: Part of proof of part 12 in Baer p. 49 line 21, As=B. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprn.h H=LHypK
hdmaprn.c C=LCDualKW
hdmaprn.d D=BaseC
hdmaprn.s S=HDMapKW
hdmaprn.k φKHLWH
Assertion hdmaprnN φranS=D

Proof

Step Hyp Ref Expression
1 hdmaprn.h H=LHypK
2 hdmaprn.c C=LCDualKW
3 hdmaprn.d D=BaseC
4 hdmaprn.s S=HDMapKW
5 hdmaprn.k φKHLWH
6 eqid DVecHKW=DVecHKW
7 eqid BaseDVecHKW=BaseDVecHKW
8 1 6 7 4 5 hdmapfnN φSFnBaseDVecHKW
9 5 adantr φsBaseDVecHKWKHLWH
10 simpr φsBaseDVecHKWsBaseDVecHKW
11 1 6 7 2 3 4 9 10 hdmapcl φsBaseDVecHKWSsD
12 11 ralrimiva φsBaseDVecHKWSsD
13 fnfvrnss SFnBaseDVecHKWsBaseDVecHKWSsDranSD
14 8 12 13 syl2anc φranSD
15 eqid LSpanDVecHKW=LSpanDVecHKW
16 eqid 0C=0C
17 eqid LSpanC=LSpanC
18 eqid mapdKW=mapdKW
19 5 adantr φsDKHLWH
20 simpr φsDsD
21 1 6 7 15 2 3 16 17 18 4 19 20 hdmaprnlem17N φsDsranS
22 14 21 eqelssd φranS=D