Metamath Proof Explorer


Theorem hdmaprnlem17N

Description: Lemma for hdmaprnN . Include zero. (Contributed by NM, 30-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem15.h H = LHyp K
hdmaprnlem15.u U = DVecH K W
hdmaprnlem15.v V = Base U
hdmaprnlem15.n N = LSpan U
hdmaprnlem15.c C = LCDual K W
hdmaprnlem15.d D = Base C
hdmaprnlem15.q 0 ˙ = 0 C
hdmaprnlem15.l L = LSpan C
hdmaprnlem15.m M = mapd K W
hdmaprnlem15.s S = HDMap K W
hdmaprnlem15.k φ K HL W H
hdmaprnlem17.se φ s D
Assertion hdmaprnlem17N φ s ran S

Proof

Step Hyp Ref Expression
1 hdmaprnlem15.h H = LHyp K
2 hdmaprnlem15.u U = DVecH K W
3 hdmaprnlem15.v V = Base U
4 hdmaprnlem15.n N = LSpan U
5 hdmaprnlem15.c C = LCDual K W
6 hdmaprnlem15.d D = Base C
7 hdmaprnlem15.q 0 ˙ = 0 C
8 hdmaprnlem15.l L = LSpan C
9 hdmaprnlem15.m M = mapd K W
10 hdmaprnlem15.s S = HDMap K W
11 hdmaprnlem15.k φ K HL W H
12 hdmaprnlem17.se φ s D
13 eleq1 s = 0 ˙ s ran S 0 ˙ ran S
14 11 adantr φ s 0 ˙ K HL W H
15 12 anim1i φ s 0 ˙ s D s 0 ˙
16 eldifsn s D 0 ˙ s D s 0 ˙
17 15 16 sylibr φ s 0 ˙ s D 0 ˙
18 1 2 3 4 5 6 7 8 9 10 14 17 hdmaprnlem16N φ s 0 ˙ s ran S
19 eqid 0 U = 0 U
20 1 2 19 5 7 10 11 hdmapval0 φ S 0 U = 0 ˙
21 1 2 3 10 11 hdmapfnN φ S Fn V
22 1 2 11 dvhlmod φ U LMod
23 3 19 lmod0vcl U LMod 0 U V
24 22 23 syl φ 0 U V
25 fnfvelrn S Fn V 0 U V S 0 U ran S
26 21 24 25 syl2anc φ S 0 U ran S
27 20 26 eqeltrrd φ 0 ˙ ran S
28 13 18 27 pm2.61ne φ s ran S