Metamath Proof Explorer


Theorem hdmapval0

Description: Value of map from vectors to functionals at zero. Note: we use dvh3dim for convenience, even though 3 dimensions aren't necessary at this point. TODO: I think either this or hdmapeq0 could be derived from the other to shorten proof. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmapval0.h H = LHyp K
hdmapval0.u U = DVecH K W
hdmapval0.o 0 ˙ = 0 U
hdmapval0.c C = LCDual K W
hdmapval0.q Q = 0 C
hdmapval0.s S = HDMap K W
hdmapval0.k φ K HL W H
Assertion hdmapval0 φ S 0 ˙ = Q

Proof

Step Hyp Ref Expression
1 hdmapval0.h H = LHyp K
2 hdmapval0.u U = DVecH K W
3 hdmapval0.o 0 ˙ = 0 U
4 hdmapval0.c C = LCDual K W
5 hdmapval0.q Q = 0 C
6 hdmapval0.s S = HDMap K W
7 hdmapval0.k φ K HL W H
8 eqid Base U = Base U
9 eqid LSpan U = LSpan U
10 eqid Base K = Base K
11 eqid LTrn K W = LTrn K W
12 eqid I Base K I LTrn K W = I Base K I LTrn K W
13 1 10 11 2 8 3 12 7 dvheveccl φ I Base K I LTrn K W Base U 0 ˙
14 13 eldifad φ I Base K I LTrn K W Base U
15 1 2 7 dvhlmod φ U LMod
16 8 3 lmod0vcl U LMod 0 ˙ Base U
17 15 16 syl φ 0 ˙ Base U
18 1 2 8 9 7 14 17 dvh3dim φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙
19 eqid Base C = Base C
20 eqid HVMap K W = HVMap K W
21 eqid HDMap1 K W = HDMap1 K W
22 7 3ad2ant1 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ K HL W H
23 17 3ad2ant1 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ 0 ˙ Base U
24 simp2 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ x Base U
25 eqid LSubSp U = LSubSp U
26 8 25 9 15 14 17 lspprcl φ LSpan U I Base K I LTrn K W 0 ˙ LSubSp U
27 8 9 15 14 17 lspprid1 φ I Base K I LTrn K W LSpan U I Base K I LTrn K W 0 ˙
28 25 9 15 26 27 lspsnel5a φ LSpan U I Base K I LTrn K W LSpan U I Base K I LTrn K W 0 ˙
29 8 9 15 14 17 lspprid2 φ 0 ˙ LSpan U I Base K I LTrn K W 0 ˙
30 25 9 15 26 29 lspsnel5a φ LSpan U 0 ˙ LSpan U I Base K I LTrn K W 0 ˙
31 28 30 unssd φ LSpan U I Base K I LTrn K W LSpan U 0 ˙ LSpan U I Base K I LTrn K W 0 ˙
32 31 ssneld φ ¬ x LSpan U I Base K I LTrn K W 0 ˙ ¬ x LSpan U I Base K I LTrn K W LSpan U 0 ˙
33 32 adantr φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ ¬ x LSpan U I Base K I LTrn K W LSpan U 0 ˙
34 33 3impia φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ ¬ x LSpan U I Base K I LTrn K W LSpan U 0 ˙
35 1 12 2 8 9 4 19 20 21 6 22 23 24 34 hdmapval2 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ S 0 ˙ = HDMap1 K W x HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W x 0 ˙
36 eqid LSpan C = LSpan C
37 eqid mapd K W = mapd K W
38 1 2 8 3 4 19 5 20 7 13 hvmapcl2 φ HVMap K W I Base K I LTrn K W Base C Q
39 38 eldifad φ HVMap K W I Base K I LTrn K W Base C
40 39 3ad2ant1 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ HVMap K W I Base K I LTrn K W Base C
41 1 2 8 3 9 4 36 37 20 7 13 mapdhvmap φ mapd K W LSpan U I Base K I LTrn K W = LSpan C HVMap K W I Base K I LTrn K W
42 41 3ad2ant1 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ mapd K W LSpan U I Base K I LTrn K W = LSpan C HVMap K W I Base K I LTrn K W
43 1 2 7 dvhlvec φ U LVec
44 43 3ad2ant1 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ U LVec
45 14 3ad2ant1 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ I Base K I LTrn K W Base U
46 simp3 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ ¬ x LSpan U I Base K I LTrn K W 0 ˙
47 8 9 44 24 45 23 46 lspindpi φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ LSpan U x LSpan U I Base K I LTrn K W LSpan U x LSpan U 0 ˙
48 47 simpld φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ LSpan U x LSpan U I Base K I LTrn K W
49 48 necomd φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ LSpan U I Base K I LTrn K W LSpan U x
50 13 3ad2ant1 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ I Base K I LTrn K W Base U 0 ˙
51 1 2 8 3 9 4 19 36 37 21 22 40 42 49 50 24 hdmap1cl φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W x Base C
52 1 2 8 3 4 19 5 21 22 51 24 hdmap1val0 φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ HDMap1 K W x HDMap1 K W I Base K I LTrn K W HVMap K W I Base K I LTrn K W x 0 ˙ = Q
53 35 52 eqtrd φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ S 0 ˙ = Q
54 53 rexlimdv3a φ x Base U ¬ x LSpan U I Base K I LTrn K W 0 ˙ S 0 ˙ = Q
55 18 54 mpd φ S 0 ˙ = Q