Metamath Proof Explorer


Theorem hdmapval0

Description: Value of map from vectors to functionals at zero. Note: we use dvh3dim for convenience, even though 3 dimensions aren't necessary at this point. TODO: I think either this or hdmapeq0 could be derived from the other to shorten proof. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmapval0.h H=LHypK
hdmapval0.u U=DVecHKW
hdmapval0.o 0˙=0U
hdmapval0.c C=LCDualKW
hdmapval0.q Q=0C
hdmapval0.s S=HDMapKW
hdmapval0.k φKHLWH
Assertion hdmapval0 φS0˙=Q

Proof

Step Hyp Ref Expression
1 hdmapval0.h H=LHypK
2 hdmapval0.u U=DVecHKW
3 hdmapval0.o 0˙=0U
4 hdmapval0.c C=LCDualKW
5 hdmapval0.q Q=0C
6 hdmapval0.s S=HDMapKW
7 hdmapval0.k φKHLWH
8 eqid BaseU=BaseU
9 eqid LSpanU=LSpanU
10 eqid BaseK=BaseK
11 eqid LTrnKW=LTrnKW
12 eqid IBaseKILTrnKW=IBaseKILTrnKW
13 1 10 11 2 8 3 12 7 dvheveccl φIBaseKILTrnKWBaseU0˙
14 13 eldifad φIBaseKILTrnKWBaseU
15 1 2 7 dvhlmod φULMod
16 8 3 lmod0vcl ULMod0˙BaseU
17 15 16 syl φ0˙BaseU
18 1 2 8 9 7 14 17 dvh3dim φxBaseU¬xLSpanUIBaseKILTrnKW0˙
19 eqid BaseC=BaseC
20 eqid HVMapKW=HVMapKW
21 eqid HDMap1KW=HDMap1KW
22 7 3ad2ant1 φxBaseU¬xLSpanUIBaseKILTrnKW0˙KHLWH
23 17 3ad2ant1 φxBaseU¬xLSpanUIBaseKILTrnKW0˙0˙BaseU
24 simp2 φxBaseU¬xLSpanUIBaseKILTrnKW0˙xBaseU
25 eqid LSubSpU=LSubSpU
26 8 25 9 15 14 17 lspprcl φLSpanUIBaseKILTrnKW0˙LSubSpU
27 8 9 15 14 17 lspprid1 φIBaseKILTrnKWLSpanUIBaseKILTrnKW0˙
28 25 9 15 26 27 lspsnel5a φLSpanUIBaseKILTrnKWLSpanUIBaseKILTrnKW0˙
29 8 9 15 14 17 lspprid2 φ0˙LSpanUIBaseKILTrnKW0˙
30 25 9 15 26 29 lspsnel5a φLSpanU0˙LSpanUIBaseKILTrnKW0˙
31 28 30 unssd φLSpanUIBaseKILTrnKWLSpanU0˙LSpanUIBaseKILTrnKW0˙
32 31 ssneld φ¬xLSpanUIBaseKILTrnKW0˙¬xLSpanUIBaseKILTrnKWLSpanU0˙
33 32 adantr φxBaseU¬xLSpanUIBaseKILTrnKW0˙¬xLSpanUIBaseKILTrnKWLSpanU0˙
34 33 3impia φxBaseU¬xLSpanUIBaseKILTrnKW0˙¬xLSpanUIBaseKILTrnKWLSpanU0˙
35 1 12 2 8 9 4 19 20 21 6 22 23 24 34 hdmapval2 φxBaseU¬xLSpanUIBaseKILTrnKW0˙S0˙=HDMap1KWxHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWx0˙
36 eqid LSpanC=LSpanC
37 eqid mapdKW=mapdKW
38 1 2 8 3 4 19 5 20 7 13 hvmapcl2 φHVMapKWIBaseKILTrnKWBaseCQ
39 38 eldifad φHVMapKWIBaseKILTrnKWBaseC
40 39 3ad2ant1 φxBaseU¬xLSpanUIBaseKILTrnKW0˙HVMapKWIBaseKILTrnKWBaseC
41 1 2 8 3 9 4 36 37 20 7 13 mapdhvmap φmapdKWLSpanUIBaseKILTrnKW=LSpanCHVMapKWIBaseKILTrnKW
42 41 3ad2ant1 φxBaseU¬xLSpanUIBaseKILTrnKW0˙mapdKWLSpanUIBaseKILTrnKW=LSpanCHVMapKWIBaseKILTrnKW
43 1 2 7 dvhlvec φULVec
44 43 3ad2ant1 φxBaseU¬xLSpanUIBaseKILTrnKW0˙ULVec
45 14 3ad2ant1 φxBaseU¬xLSpanUIBaseKILTrnKW0˙IBaseKILTrnKWBaseU
46 simp3 φxBaseU¬xLSpanUIBaseKILTrnKW0˙¬xLSpanUIBaseKILTrnKW0˙
47 8 9 44 24 45 23 46 lspindpi φxBaseU¬xLSpanUIBaseKILTrnKW0˙LSpanUxLSpanUIBaseKILTrnKWLSpanUxLSpanU0˙
48 47 simpld φxBaseU¬xLSpanUIBaseKILTrnKW0˙LSpanUxLSpanUIBaseKILTrnKW
49 48 necomd φxBaseU¬xLSpanUIBaseKILTrnKW0˙LSpanUIBaseKILTrnKWLSpanUx
50 13 3ad2ant1 φxBaseU¬xLSpanUIBaseKILTrnKW0˙IBaseKILTrnKWBaseU0˙
51 1 2 8 3 9 4 19 36 37 21 22 40 42 49 50 24 hdmap1cl φxBaseU¬xLSpanUIBaseKILTrnKW0˙HDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWxBaseC
52 1 2 8 3 4 19 5 21 22 51 24 hdmap1val0 φxBaseU¬xLSpanUIBaseKILTrnKW0˙HDMap1KWxHDMap1KWIBaseKILTrnKWHVMapKWIBaseKILTrnKWx0˙=Q
53 35 52 eqtrd φxBaseU¬xLSpanUIBaseKILTrnKW0˙S0˙=Q
54 53 rexlimdv3a φxBaseU¬xLSpanUIBaseKILTrnKW0˙S0˙=Q
55 18 54 mpd φS0˙=Q