Metamath Proof Explorer


Theorem hdmapval2

Description: Value of map from vectors to functionals with a specific auxiliary vector. TODO: Would shorter proofs result if the .ne hypothesis were changed to two =/= hypothesis? Consider hdmaplem1 through hdmaplem4 , which would become obsolete. (Contributed by NM, 15-May-2015)

Ref Expression
Hypotheses hdmapval2.h H = LHyp K
hdmapval2.e E = I Base K I LTrn K W
hdmapval2.u U = DVecH K W
hdmapval2.v V = Base U
hdmapval2.n N = LSpan U
hdmapval2.c C = LCDual K W
hdmapval2.d D = Base C
hdmapval2.j J = HVMap K W
hdmapval2.i I = HDMap1 K W
hdmapval2.s S = HDMap K W
hdmapval2.k φ K HL W H
hdmapval2.t φ T V
hdmapval2.x φ X V
hdmapval2.ne φ ¬ X N E N T
Assertion hdmapval2 φ S T = I X I E J E X T

Proof

Step Hyp Ref Expression
1 hdmapval2.h H = LHyp K
2 hdmapval2.e E = I Base K I LTrn K W
3 hdmapval2.u U = DVecH K W
4 hdmapval2.v V = Base U
5 hdmapval2.n N = LSpan U
6 hdmapval2.c C = LCDual K W
7 hdmapval2.d D = Base C
8 hdmapval2.j J = HVMap K W
9 hdmapval2.i I = HDMap1 K W
10 hdmapval2.s S = HDMap K W
11 hdmapval2.k φ K HL W H
12 hdmapval2.t φ T V
13 hdmapval2.x φ X V
14 hdmapval2.ne φ ¬ X N E N T
15 eqidd φ S T = S T
16 1 3 4 6 7 10 11 12 hdmapcl φ S T D
17 1 2 3 4 5 6 7 8 9 10 11 12 16 hdmapval2lem φ S T = S T z V ¬ z N E N T S T = I z I E J E z T
18 15 17 mpbid φ z V ¬ z N E N T S T = I z I E J E z T
19 eleq1 z = X z N E N T X N E N T
20 19 notbid z = X ¬ z N E N T ¬ X N E N T
21 oteq1 z = X z I E J E z T = X I E J E z T
22 oteq3 z = X E J E z = E J E X
23 22 fveq2d z = X I E J E z = I E J E X
24 23 oteq2d z = X X I E J E z T = X I E J E X T
25 21 24 eqtrd z = X z I E J E z T = X I E J E X T
26 25 fveq2d z = X I z I E J E z T = I X I E J E X T
27 26 eqeq2d z = X S T = I z I E J E z T S T = I X I E J E X T
28 20 27 imbi12d z = X ¬ z N E N T S T = I z I E J E z T ¬ X N E N T S T = I X I E J E X T
29 28 rspccv z V ¬ z N E N T S T = I z I E J E z T X V ¬ X N E N T S T = I X I E J E X T
30 18 13 14 29 syl3c φ S T = I X I E J E X T