Metamath Proof Explorer


Theorem hdmaplem1

Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmaplem1.v V=BaseW
hdmaplem1.n N=LSpanW
hdmaplem1.w φWLMod
hdmaplem1.z φZV
hdmaplem1.j φ¬ZNXNY
hdmaplem1.x φXV
Assertion hdmaplem1 φNZNX

Proof

Step Hyp Ref Expression
1 hdmaplem1.v V=BaseW
2 hdmaplem1.n N=LSpanW
3 hdmaplem1.w φWLMod
4 hdmaplem1.z φZV
5 hdmaplem1.j φ¬ZNXNY
6 hdmaplem1.x φXV
7 elun1 ZNXZNXNY
8 5 7 nsyl φ¬ZNX
9 1 2 3 4 6 8 lspsnne2 φNZNX