Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmaplem1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
hdmaplem1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
hdmaplem1.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
hdmaplem1.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
hdmaplem1.j | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) | ||
hdmaplem1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
Assertion | hdmaplem1 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaplem1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
2 | hdmaplem1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
3 | hdmaplem1.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
4 | hdmaplem1.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
5 | hdmaplem1.j | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) | |
6 | hdmaplem1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
7 | elun1 | ⊢ ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) → 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) | |
8 | 5 7 | nsyl | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
9 | 1 2 3 4 6 8 | lspsnne2 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |