Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hdmaplem1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| hdmaplem1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| hdmaplem1.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| hdmaplem1.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| hdmaplem1.j | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) | ||
| hdmaplem1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | hdmaplem2N | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hdmaplem1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | hdmaplem1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | hdmaplem1.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | hdmaplem1.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 5 | hdmaplem1.j | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) | |
| 6 | hdmaplem1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | elun2 | ⊢ ( 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) → 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) | |
| 8 | 5 7 | nsyl | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) | 
| 9 | 1 2 3 4 6 8 | lspsnne2 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |