Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplem1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
hdmaplem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
hdmaplem1.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
4 |
|
hdmaplem1.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
5 |
|
hdmaplem1.j |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) |
6 |
|
hdmaplem1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
hdmaplem3.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
9 |
1 8 2
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
10 |
3 6 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
11 |
|
elun2 |
⊢ ( 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) → 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) |
12 |
5 11
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
13 |
7 8 3 10 4 12
|
lssneln0 |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |