Metamath Proof Explorer


Theorem hdmaplem3

Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmaplem1.v 𝑉 = ( Base ‘ 𝑊 )
hdmaplem1.n 𝑁 = ( LSpan ‘ 𝑊 )
hdmaplem1.w ( 𝜑𝑊 ∈ LMod )
hdmaplem1.z ( 𝜑𝑍𝑉 )
hdmaplem1.j ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) )
hdmaplem1.y ( 𝜑𝑌𝑉 )
hdmaplem3.o 0 = ( 0g𝑊 )
Assertion hdmaplem3 ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )

Proof

Step Hyp Ref Expression
1 hdmaplem1.v 𝑉 = ( Base ‘ 𝑊 )
2 hdmaplem1.n 𝑁 = ( LSpan ‘ 𝑊 )
3 hdmaplem1.w ( 𝜑𝑊 ∈ LMod )
4 hdmaplem1.z ( 𝜑𝑍𝑉 )
5 hdmaplem1.j ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) )
6 hdmaplem1.y ( 𝜑𝑌𝑉 )
7 hdmaplem3.o 0 = ( 0g𝑊 )
8 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
9 1 8 2 lspsncl ( ( 𝑊 ∈ LMod ∧ 𝑌𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) )
10 3 6 9 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) )
11 elun2 ( 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) → 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) )
12 5 11 nsyl ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) )
13 7 8 3 10 4 12 lssneln0 ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )