Metamath Proof Explorer


Theorem hdmaplem3

Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmaplem1.v V=BaseW
hdmaplem1.n N=LSpanW
hdmaplem1.w φWLMod
hdmaplem1.z φZV
hdmaplem1.j φ¬ZNXNY
hdmaplem1.y φYV
hdmaplem3.o 0˙=0W
Assertion hdmaplem3 φZV0˙

Proof

Step Hyp Ref Expression
1 hdmaplem1.v V=BaseW
2 hdmaplem1.n N=LSpanW
3 hdmaplem1.w φWLMod
4 hdmaplem1.z φZV
5 hdmaplem1.j φ¬ZNXNY
6 hdmaplem1.y φYV
7 hdmaplem3.o 0˙=0W
8 eqid LSubSpW=LSubSpW
9 1 8 2 lspsncl WLModYVNYLSubSpW
10 3 6 9 syl2anc φNYLSubSpW
11 elun2 ZNYZNXNY
12 5 11 nsyl φ¬ZNY
13 7 8 3 10 4 12 lssneln0 φZV0˙