Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmaplem1.v | |- V = ( Base ` W ) |
|
hdmaplem1.n | |- N = ( LSpan ` W ) |
||
hdmaplem1.w | |- ( ph -> W e. LMod ) |
||
hdmaplem1.z | |- ( ph -> Z e. V ) |
||
hdmaplem1.j | |- ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |
||
hdmaplem1.y | |- ( ph -> Y e. V ) |
||
hdmaplem3.o | |- .0. = ( 0g ` W ) |
||
Assertion | hdmaplem3 | |- ( ph -> Z e. ( V \ { .0. } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaplem1.v | |- V = ( Base ` W ) |
|
2 | hdmaplem1.n | |- N = ( LSpan ` W ) |
|
3 | hdmaplem1.w | |- ( ph -> W e. LMod ) |
|
4 | hdmaplem1.z | |- ( ph -> Z e. V ) |
|
5 | hdmaplem1.j | |- ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |
|
6 | hdmaplem1.y | |- ( ph -> Y e. V ) |
|
7 | hdmaplem3.o | |- .0. = ( 0g ` W ) |
|
8 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
9 | 1 8 2 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
10 | 3 6 9 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
11 | elun2 | |- ( Z e. ( N ` { Y } ) -> Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |
|
12 | 5 11 | nsyl | |- ( ph -> -. Z e. ( N ` { Y } ) ) |
13 | 7 8 3 10 4 12 | lssneln0 | |- ( ph -> Z e. ( V \ { .0. } ) ) |