| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaplem1.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | hdmaplem1.n |  |-  N = ( LSpan ` W ) | 
						
							| 3 |  | hdmaplem1.w |  |-  ( ph -> W e. LMod ) | 
						
							| 4 |  | hdmaplem1.z |  |-  ( ph -> Z e. V ) | 
						
							| 5 |  | hdmaplem1.j |  |-  ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) | 
						
							| 6 |  | hdmaplem1.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | hdmaplem3.o |  |-  .0. = ( 0g ` W ) | 
						
							| 8 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 9 | 1 8 2 | lspsncl |  |-  ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) | 
						
							| 10 | 3 6 9 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) | 
						
							| 11 |  | elun2 |  |-  ( Z e. ( N ` { Y } ) -> Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) | 
						
							| 12 | 5 11 | nsyl |  |-  ( ph -> -. Z e. ( N ` { Y } ) ) | 
						
							| 13 | 7 8 3 10 4 12 | lssneln0 |  |-  ( ph -> Z e. ( V \ { .0. } ) ) |