| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaplem1.v |
|- V = ( Base ` W ) |
| 2 |
|
hdmaplem1.n |
|- N = ( LSpan ` W ) |
| 3 |
|
hdmaplem1.w |
|- ( ph -> W e. LMod ) |
| 4 |
|
hdmaplem1.z |
|- ( ph -> Z e. V ) |
| 5 |
|
hdmaplem1.j |
|- ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |
| 6 |
|
hdmaplem1.y |
|- ( ph -> Y e. V ) |
| 7 |
|
hdmaplem3.o |
|- .0. = ( 0g ` W ) |
| 8 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 9 |
1 8 2
|
lspsncl |
|- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 10 |
3 6 9
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 11 |
|
elun2 |
|- ( Z e. ( N ` { Y } ) -> Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |
| 12 |
5 11
|
nsyl |
|- ( ph -> -. Z e. ( N ` { Y } ) ) |
| 13 |
7 8 3 10 4 12
|
lssneln0 |
|- ( ph -> Z e. ( V \ { .0. } ) ) |