Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplem1.v |
|- V = ( Base ` W ) |
2 |
|
hdmaplem1.n |
|- N = ( LSpan ` W ) |
3 |
|
hdmaplem4.o |
|- .0. = ( 0g ` W ) |
4 |
|
hdmaplem4.w |
|- ( ph -> W e. LVec ) |
5 |
|
hdmaplem4.x |
|- ( ph -> X e. V ) |
6 |
|
hdmaplem4.y |
|- ( ph -> Y e. V ) |
7 |
|
hdmaplem4.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
8 |
|
hdmaplem4.e |
|- ( ph -> ( N ` { Z } ) =/= ( N ` { X } ) ) |
9 |
|
hdmaplem4.f |
|- ( ph -> ( N ` { Z } ) =/= ( N ` { Y } ) ) |
10 |
1 3 2 4 7 5 8
|
lspsnne1 |
|- ( ph -> -. Z e. ( N ` { X } ) ) |
11 |
1 3 2 4 7 6 9
|
lspsnne1 |
|- ( ph -> -. Z e. ( N ` { Y } ) ) |
12 |
|
ioran |
|- ( -. ( Z e. ( N ` { X } ) \/ Z e. ( N ` { Y } ) ) <-> ( -. Z e. ( N ` { X } ) /\ -. Z e. ( N ` { Y } ) ) ) |
13 |
|
elun |
|- ( Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) <-> ( Z e. ( N ` { X } ) \/ Z e. ( N ` { Y } ) ) ) |
14 |
12 13
|
xchnxbir |
|- ( -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) <-> ( -. Z e. ( N ` { X } ) /\ -. Z e. ( N ` { Y } ) ) ) |
15 |
10 11 14
|
sylanbrc |
|- ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |