Metamath Proof Explorer


Theorem hdmaplem4

Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmaplem1.v
|- V = ( Base ` W )
hdmaplem1.n
|- N = ( LSpan ` W )
hdmaplem4.o
|- .0. = ( 0g ` W )
hdmaplem4.w
|- ( ph -> W e. LVec )
hdmaplem4.x
|- ( ph -> X e. V )
hdmaplem4.y
|- ( ph -> Y e. V )
hdmaplem4.z
|- ( ph -> Z e. ( V \ { .0. } ) )
hdmaplem4.e
|- ( ph -> ( N ` { Z } ) =/= ( N ` { X } ) )
hdmaplem4.f
|- ( ph -> ( N ` { Z } ) =/= ( N ` { Y } ) )
Assertion hdmaplem4
|- ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) )

Proof

Step Hyp Ref Expression
1 hdmaplem1.v
 |-  V = ( Base ` W )
2 hdmaplem1.n
 |-  N = ( LSpan ` W )
3 hdmaplem4.o
 |-  .0. = ( 0g ` W )
4 hdmaplem4.w
 |-  ( ph -> W e. LVec )
5 hdmaplem4.x
 |-  ( ph -> X e. V )
6 hdmaplem4.y
 |-  ( ph -> Y e. V )
7 hdmaplem4.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
8 hdmaplem4.e
 |-  ( ph -> ( N ` { Z } ) =/= ( N ` { X } ) )
9 hdmaplem4.f
 |-  ( ph -> ( N ` { Z } ) =/= ( N ` { Y } ) )
10 1 3 2 4 7 5 8 lspsnne1
 |-  ( ph -> -. Z e. ( N ` { X } ) )
11 1 3 2 4 7 6 9 lspsnne1
 |-  ( ph -> -. Z e. ( N ` { Y } ) )
12 ioran
 |-  ( -. ( Z e. ( N ` { X } ) \/ Z e. ( N ` { Y } ) ) <-> ( -. Z e. ( N ` { X } ) /\ -. Z e. ( N ` { Y } ) ) )
13 elun
 |-  ( Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) <-> ( Z e. ( N ` { X } ) \/ Z e. ( N ` { Y } ) ) )
14 12 13 xchnxbir
 |-  ( -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) <-> ( -. Z e. ( N ` { X } ) /\ -. Z e. ( N ` { Y } ) ) )
15 10 11 14 sylanbrc
 |-  ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) )