| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaplem1.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | hdmaplem1.n |  |-  N = ( LSpan ` W ) | 
						
							| 3 |  | hdmaplem4.o |  |-  .0. = ( 0g ` W ) | 
						
							| 4 |  | hdmaplem4.w |  |-  ( ph -> W e. LVec ) | 
						
							| 5 |  | hdmaplem4.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | hdmaplem4.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | hdmaplem4.z |  |-  ( ph -> Z e. ( V \ { .0. } ) ) | 
						
							| 8 |  | hdmaplem4.e |  |-  ( ph -> ( N ` { Z } ) =/= ( N ` { X } ) ) | 
						
							| 9 |  | hdmaplem4.f |  |-  ( ph -> ( N ` { Z } ) =/= ( N ` { Y } ) ) | 
						
							| 10 | 1 3 2 4 7 5 8 | lspsnne1 |  |-  ( ph -> -. Z e. ( N ` { X } ) ) | 
						
							| 11 | 1 3 2 4 7 6 9 | lspsnne1 |  |-  ( ph -> -. Z e. ( N ` { Y } ) ) | 
						
							| 12 |  | ioran |  |-  ( -. ( Z e. ( N ` { X } ) \/ Z e. ( N ` { Y } ) ) <-> ( -. Z e. ( N ` { X } ) /\ -. Z e. ( N ` { Y } ) ) ) | 
						
							| 13 |  | elun |  |-  ( Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) <-> ( Z e. ( N ` { X } ) \/ Z e. ( N ` { Y } ) ) ) | 
						
							| 14 | 12 13 | xchnxbir |  |-  ( -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) <-> ( -. Z e. ( N ` { X } ) /\ -. Z e. ( N ` { Y } ) ) ) | 
						
							| 15 | 10 11 14 | sylanbrc |  |-  ( ph -> -. Z e. ( ( N ` { X } ) u. ( N ` { Y } ) ) ) |