Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplem1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
hdmaplem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
hdmaplem4.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
4 |
|
hdmaplem4.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
5 |
|
hdmaplem4.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
6 |
|
hdmaplem4.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
7 |
|
hdmaplem4.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
8 |
|
hdmaplem4.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
9 |
|
hdmaplem4.f |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
10 |
1 3 2 4 7 5 8
|
lspsnne1 |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
11 |
1 3 2 4 7 6 9
|
lspsnne1 |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
12 |
|
ioran |
⊢ ( ¬ ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
13 |
|
elun |
⊢ ( 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
14 |
12 13
|
xchnxbir |
⊢ ( ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) |
15 |
10 11 14
|
sylanbrc |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ) |