Metamath Proof Explorer


Theorem hdmaplem4

Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmaplem1.v 𝑉 = ( Base ‘ 𝑊 )
hdmaplem1.n 𝑁 = ( LSpan ‘ 𝑊 )
hdmaplem4.o 0 = ( 0g𝑊 )
hdmaplem4.w ( 𝜑𝑊 ∈ LVec )
hdmaplem4.x ( 𝜑𝑋𝑉 )
hdmaplem4.y ( 𝜑𝑌𝑉 )
hdmaplem4.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
hdmaplem4.e ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) )
hdmaplem4.f ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
Assertion hdmaplem4 ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) )

Proof

Step Hyp Ref Expression
1 hdmaplem1.v 𝑉 = ( Base ‘ 𝑊 )
2 hdmaplem1.n 𝑁 = ( LSpan ‘ 𝑊 )
3 hdmaplem4.o 0 = ( 0g𝑊 )
4 hdmaplem4.w ( 𝜑𝑊 ∈ LVec )
5 hdmaplem4.x ( 𝜑𝑋𝑉 )
6 hdmaplem4.y ( 𝜑𝑌𝑉 )
7 hdmaplem4.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
8 hdmaplem4.e ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) )
9 hdmaplem4.f ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
10 1 3 2 4 7 5 8 lspsnne1 ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) )
11 1 3 2 4 7 6 9 lspsnne1 ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) )
12 ioran ( ¬ ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) )
13 elun ( 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ∨ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) )
14 12 13 xchnxbir ( ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) ↔ ( ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑌 } ) ) )
15 10 11 14 sylanbrc ( 𝜑 → ¬ 𝑍 ∈ ( ( 𝑁 ‘ { 𝑋 } ) ∪ ( 𝑁 ‘ { 𝑌 } ) ) )