Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 5-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdh8a.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
mapdh8a.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh8a.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | ||
mapdh8a.s | ⊢ − = ( -g ‘ 𝑈 ) | ||
mapdh8a.o | ⊢ 0 = ( 0g ‘ 𝑈 ) | ||
mapdh8a.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | ||
mapdh8a.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh8a.d | ⊢ 𝐷 = ( Base ‘ 𝐶 ) | ||
mapdh8a.r | ⊢ 𝑅 = ( -g ‘ 𝐶 ) | ||
mapdh8a.q | ⊢ 𝑄 = ( 0g ‘ 𝐶 ) | ||
mapdh8a.j | ⊢ 𝐽 = ( LSpan ‘ 𝐶 ) | ||
mapdh8a.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh8a.i | ⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | ||
mapdh8a.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
mapdh8a.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | ||
mapdh8a.mn | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) | ||
mapdh8a.a | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) | ||
mapdh8a.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
mapdh8a.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
mapdh8a.yz | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) | ||
mapdh8a.xt | ⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
mapdh8a.xn | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) | ||
Assertion | mapdh8a | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | mapdh8a.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | mapdh8a.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
4 | mapdh8a.s | ⊢ − = ( -g ‘ 𝑈 ) | |
5 | mapdh8a.o | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
6 | mapdh8a.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | |
7 | mapdh8a.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | |
8 | mapdh8a.d | ⊢ 𝐷 = ( Base ‘ 𝐶 ) | |
9 | mapdh8a.r | ⊢ 𝑅 = ( -g ‘ 𝐶 ) | |
10 | mapdh8a.q | ⊢ 𝑄 = ( 0g ‘ 𝐶 ) | |
11 | mapdh8a.j | ⊢ 𝐽 = ( LSpan ‘ 𝐶 ) | |
12 | mapdh8a.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | |
13 | mapdh8a.i | ⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | |
14 | mapdh8a.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
15 | mapdh8a.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | |
16 | mapdh8a.mn | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) | |
17 | mapdh8a.a | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) | |
18 | mapdh8a.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
19 | mapdh8a.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | |
20 | mapdh8a.yz | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) | |
21 | mapdh8a.xt | ⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) | |
22 | mapdh8a.xn | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) | |
23 | eqidd | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) | |
24 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 21 22 20 17 23 | mapdheq4 | ⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) |