Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
2 |
|
mapdh.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
3 |
|
mapdh.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
mapdh.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdh.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
mapdh.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
7 |
|
mapdh.s |
⊢ − = ( -g ‘ 𝑈 ) |
8 |
|
mapdhc.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
9 |
|
mapdh.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
10 |
|
mapdh.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
mapdh.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
12 |
|
mapdh.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
13 |
|
mapdh.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
14 |
|
mapdh.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdhc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
mapdh.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
17 |
|
mapdhcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
mapdhe4.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
|
mapdhe.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) ) |
20 |
|
mapdh.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
21 |
|
mapdh.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
22 |
|
mapdh.eg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
23 |
|
mapdh.ee |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ) |
24 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
25 |
3 5 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
26 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
27 |
6 8 9 25 18 24 26 21 20
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ∧ ¬ 𝑌 ∈ ( 𝑁 ‘ { 𝑋 , 𝑍 } ) ) ) |
28 |
27
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 24 28
|
mapdhcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) ∈ 𝐷 ) |
30 |
23 29
|
eqeltrrd |
⊢ ( 𝜑 → 𝐸 ∈ 𝐷 ) |
31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 30 28
|
mapdheq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑍 〉 ) = 𝐸 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐽 ‘ { 𝐸 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ) ) ) |
32 |
23 31
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐽 ‘ { 𝐸 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑍 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐸 ) } ) ) ) |
33 |
32
|
simpld |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐽 ‘ { 𝐸 } ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
mapdheq4lem |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 − 𝑍 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) |
35 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
36 |
6 8 9 25 35 19 26 21 20
|
lspindp2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
37 |
36
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 35 37
|
mapdhcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ) |
39 |
22 38
|
eqeltrrd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 39 37
|
mapdheq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) |
41 |
22 40
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) |
42 |
41
|
simpld |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 42 18 19 30 21
|
mapdheq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑍 〉 ) = 𝐸 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑍 } ) ) = ( 𝐽 ‘ { 𝐸 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 − 𝑍 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) ) ) |
44 |
33 34 43
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑍 〉 ) = 𝐸 ) |