Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
|- Q = ( 0g ` C ) |
2 |
|
mapdh.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
3 |
|
mapdh.h |
|- H = ( LHyp ` K ) |
4 |
|
mapdh.m |
|- M = ( ( mapd ` K ) ` W ) |
5 |
|
mapdh.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
mapdh.v |
|- V = ( Base ` U ) |
7 |
|
mapdh.s |
|- .- = ( -g ` U ) |
8 |
|
mapdhc.o |
|- .0. = ( 0g ` U ) |
9 |
|
mapdh.n |
|- N = ( LSpan ` U ) |
10 |
|
mapdh.c |
|- C = ( ( LCDual ` K ) ` W ) |
11 |
|
mapdh.d |
|- D = ( Base ` C ) |
12 |
|
mapdh.r |
|- R = ( -g ` C ) |
13 |
|
mapdh.j |
|- J = ( LSpan ` C ) |
14 |
|
mapdh.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
15 |
|
mapdhc.f |
|- ( ph -> F e. D ) |
16 |
|
mapdh.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
17 |
|
mapdhcl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
mapdhe4.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
19 |
|
mapdhe.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
20 |
|
mapdh.xn |
|- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
21 |
|
mapdh.yz |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { Z } ) ) |
22 |
|
mapdh.eg |
|- ( ph -> ( I ` <. X , F , Y >. ) = G ) |
23 |
|
mapdh.ee |
|- ( ph -> ( I ` <. X , F , Z >. ) = E ) |
24 |
19
|
eldifad |
|- ( ph -> Z e. V ) |
25 |
3 5 14
|
dvhlvec |
|- ( ph -> U e. LVec ) |
26 |
17
|
eldifad |
|- ( ph -> X e. V ) |
27 |
6 8 9 25 18 24 26 21 20
|
lspindp1 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Z } ) /\ -. Y e. ( N ` { X , Z } ) ) ) |
28 |
27
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 24 28
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Z >. ) e. D ) |
30 |
23 29
|
eqeltrrd |
|- ( ph -> E e. D ) |
31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 30 28
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) ) ) |
32 |
23 31
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( X .- Z ) } ) ) = ( J ` { ( F R E ) } ) ) ) |
33 |
32
|
simpld |
|- ( ph -> ( M ` ( N ` { Z } ) ) = ( J ` { E } ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
mapdheq4lem |
|- ( ph -> ( M ` ( N ` { ( Y .- Z ) } ) ) = ( J ` { ( G R E ) } ) ) |
35 |
18
|
eldifad |
|- ( ph -> Y e. V ) |
36 |
6 8 9 25 35 19 26 21 20
|
lspindp2 |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ -. Z e. ( N ` { X , Y } ) ) ) |
37 |
36
|
simpld |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 35 37
|
mapdhcl |
|- ( ph -> ( I ` <. X , F , Y >. ) e. D ) |
39 |
22 38
|
eqeltrrd |
|- ( ph -> G e. D ) |
40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 39 37
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) ) |
41 |
22 40
|
mpbid |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) |
42 |
41
|
simpld |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 42 18 19 30 21
|
mapdheq |
|- ( ph -> ( ( I ` <. Y , G , Z >. ) = E <-> ( ( M ` ( N ` { Z } ) ) = ( J ` { E } ) /\ ( M ` ( N ` { ( Y .- Z ) } ) ) = ( J ` { ( G R E ) } ) ) ) ) |
44 |
33 34 43
|
mpbir2and |
|- ( ph -> ( I ` <. Y , G , Z >. ) = E ) |