| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspindp1.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspindp1.o |  |-  .0. = ( 0g ` W ) | 
						
							| 3 |  | lspindp1.n |  |-  N = ( LSpan ` W ) | 
						
							| 4 |  | lspindp1.w |  |-  ( ph -> W e. LVec ) | 
						
							| 5 |  | lspindp1.y |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 6 |  | lspindp1.z |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | lspindp1.x |  |-  ( ph -> Z e. V ) | 
						
							| 8 |  | lspindp1.q |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 9 |  | lspindp1.e |  |-  ( ph -> -. Z e. ( N ` { X , Y } ) ) | 
						
							| 10 | 5 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 11 | 1 3 4 7 10 6 9 | lspindpi |  |-  ( ph -> ( ( N ` { Z } ) =/= ( N ` { X } ) /\ ( N ` { Z } ) =/= ( N ` { Y } ) ) ) | 
						
							| 12 | 11 | simprd |  |-  ( ph -> ( N ` { Z } ) =/= ( N ` { Y } ) ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> W e. LVec ) | 
						
							| 14 | 5 | adantr |  |-  ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> X e. ( V \ { .0. } ) ) | 
						
							| 15 | 7 | adantr |  |-  ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> Z e. V ) | 
						
							| 16 | 6 | adantr |  |-  ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> Y e. V ) | 
						
							| 17 | 8 | adantr |  |-  ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> X e. ( N ` { Z , Y } ) ) | 
						
							| 19 | 1 2 3 13 14 15 16 17 18 | lspexch |  |-  ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> Z e. ( N ` { X , Y } ) ) | 
						
							| 20 | 9 19 | mtand |  |-  ( ph -> -. X e. ( N ` { Z , Y } ) ) | 
						
							| 21 | 12 20 | jca |  |-  ( ph -> ( ( N ` { Z } ) =/= ( N ` { Y } ) /\ -. X e. ( N ` { Z , Y } ) ) ) |