Metamath Proof Explorer


Theorem lspindp1

Description: Alternate way to say 3 vectors are mutually independent (swap 1st and 2nd). (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses lspindp1.v V=BaseW
lspindp1.o 0˙=0W
lspindp1.n N=LSpanW
lspindp1.w φWLVec
lspindp1.y φXV0˙
lspindp1.z φYV
lspindp1.x φZV
lspindp1.q φNXNY
lspindp1.e φ¬ZNXY
Assertion lspindp1 φNZNY¬XNZY

Proof

Step Hyp Ref Expression
1 lspindp1.v V=BaseW
2 lspindp1.o 0˙=0W
3 lspindp1.n N=LSpanW
4 lspindp1.w φWLVec
5 lspindp1.y φXV0˙
6 lspindp1.z φYV
7 lspindp1.x φZV
8 lspindp1.q φNXNY
9 lspindp1.e φ¬ZNXY
10 5 eldifad φXV
11 1 3 4 7 10 6 9 lspindpi φNZNXNZNY
12 11 simprd φNZNY
13 4 adantr φXNZYWLVec
14 5 adantr φXNZYXV0˙
15 7 adantr φXNZYZV
16 6 adantr φXNZYYV
17 8 adantr φXNZYNXNY
18 simpr φXNZYXNZY
19 1 2 3 13 14 15 16 17 18 lspexch φXNZYZNXY
20 9 19 mtand φ¬XNZY
21 12 20 jca φNZNY¬XNZY