Metamath Proof Explorer


Theorem lspindpi

Description: Partial independence property. (Contributed by NM, 23-Apr-2015)

Ref Expression
Hypotheses lspindpi.v V=BaseW
lspindpi.n N=LSpanW
lspindpi.w φWLVec
lspindpi.x φXV
lspindpi.y φYV
lspindpi.z φZV
lspindpi.e φ¬XNYZ
Assertion lspindpi φNXNYNXNZ

Proof

Step Hyp Ref Expression
1 lspindpi.v V=BaseW
2 lspindpi.n N=LSpanW
3 lspindpi.w φWLVec
4 lspindpi.x φXV
5 lspindpi.y φYV
6 lspindpi.z φZV
7 lspindpi.e φ¬XNYZ
8 lveclmod WLVecWLMod
9 3 8 syl φWLMod
10 eqid LSubSpW=LSubSpW
11 10 lsssssubg WLModLSubSpWSubGrpW
12 9 11 syl φLSubSpWSubGrpW
13 1 10 2 lspsncl WLModYVNYLSubSpW
14 9 5 13 syl2anc φNYLSubSpW
15 12 14 sseldd φNYSubGrpW
16 1 10 2 lspsncl WLModZVNZLSubSpW
17 9 6 16 syl2anc φNZLSubSpW
18 12 17 sseldd φNZSubGrpW
19 eqid LSSumW=LSSumW
20 19 lsmub1 NYSubGrpWNZSubGrpWNYNYLSSumWNZ
21 15 18 20 syl2anc φNYNYLSSumWNZ
22 1 2 19 9 5 6 lsmpr φNYZ=NYLSSumWNZ
23 21 22 sseqtrrd φNYNYZ
24 sseq1 NX=NYNXNYZNYNYZ
25 23 24 syl5ibrcom φNX=NYNXNYZ
26 1 10 2 9 5 6 lspprcl φNYZLSubSpW
27 1 10 2 9 26 4 lspsnel5 φXNYZNXNYZ
28 25 27 sylibrd φNX=NYXNYZ
29 28 necon3bd φ¬XNYZNXNY
30 7 29 mpd φNXNY
31 19 lsmub2 NYSubGrpWNZSubGrpWNZNYLSSumWNZ
32 15 18 31 syl2anc φNZNYLSSumWNZ
33 32 22 sseqtrrd φNZNYZ
34 sseq1 NX=NZNXNYZNZNYZ
35 33 34 syl5ibrcom φNX=NZNXNYZ
36 35 27 sylibrd φNX=NZXNYZ
37 36 necon3bd φ¬XNYZNXNZ
38 7 37 mpd φNXNZ
39 30 38 jca φNXNYNXNZ