Metamath Proof Explorer


Theorem lspindp2l

Description: Alternate way to say 3 vectors are mutually independent (rotate left). (Contributed by NM, 10-May-2015)

Ref Expression
Hypotheses lspindp1.v V=BaseW
lspindp1.o 0˙=0W
lspindp1.n N=LSpanW
lspindp1.w φWLVec
lspindp1.y φXV0˙
lspindp1.z φYV
lspindp1.x φZV
lspindp1.q φNXNY
lspindp1.e φ¬ZNXY
Assertion lspindp2l φNYNZ¬XNYZ

Proof

Step Hyp Ref Expression
1 lspindp1.v V=BaseW
2 lspindp1.o 0˙=0W
3 lspindp1.n N=LSpanW
4 lspindp1.w φWLVec
5 lspindp1.y φXV0˙
6 lspindp1.z φYV
7 lspindp1.x φZV
8 lspindp1.q φNXNY
9 lspindp1.e φ¬ZNXY
10 1 2 3 4 5 6 7 8 9 lspindp1 φNZNY¬XNZY
11 10 simpld φNZNY
12 11 necomd φNYNZ
13 10 simprd φ¬XNZY
14 prcom ZY=YZ
15 14 fveq2i NZY=NYZ
16 15 eleq2i XNZYXNYZ
17 13 16 sylnib φ¬XNYZ
18 12 17 jca φNYNZ¬XNYZ