| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspindp1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspindp1.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 3 |
|
lspindp1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspindp1.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lspindp1.y |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 6 |
|
lspindp1.z |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
|
lspindp1.x |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 8 |
|
lspindp1.q |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 9 |
|
lspindp1.e |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
lspindp1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) ) |
| 11 |
10
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 12 |
11
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 13 |
10
|
simprd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) |
| 14 |
|
prcom |
⊢ { 𝑍 , 𝑌 } = { 𝑌 , 𝑍 } |
| 15 |
14
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , 𝑍 } ) |
| 16 |
15
|
eleq2i |
⊢ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 17 |
13 16
|
sylnib |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 18 |
12 17
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |