Metamath Proof Explorer


Theorem lspindp2l

Description: Alternate way to say 3 vectors are mutually independent (rotate left). (Contributed by NM, 10-May-2015)

Ref Expression
Hypotheses lspindp1.v 𝑉 = ( Base ‘ 𝑊 )
lspindp1.o 0 = ( 0g𝑊 )
lspindp1.n 𝑁 = ( LSpan ‘ 𝑊 )
lspindp1.w ( 𝜑𝑊 ∈ LVec )
lspindp1.y ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
lspindp1.z ( 𝜑𝑌𝑉 )
lspindp1.x ( 𝜑𝑍𝑉 )
lspindp1.q ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
lspindp1.e ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
Assertion lspindp2l ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) )

Proof

Step Hyp Ref Expression
1 lspindp1.v 𝑉 = ( Base ‘ 𝑊 )
2 lspindp1.o 0 = ( 0g𝑊 )
3 lspindp1.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lspindp1.w ( 𝜑𝑊 ∈ LVec )
5 lspindp1.y ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
6 lspindp1.z ( 𝜑𝑌𝑉 )
7 lspindp1.x ( 𝜑𝑍𝑉 )
8 lspindp1.q ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
9 lspindp1.e ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
10 1 2 3 4 5 6 7 8 9 lspindp1 ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) )
11 10 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
12 11 necomd ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) )
13 10 simprd ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) )
14 prcom { 𝑍 , 𝑌 } = { 𝑌 , 𝑍 }
15 14 fveq2i ( 𝑁 ‘ { 𝑍 , 𝑌 } ) = ( 𝑁 ‘ { 𝑌 , 𝑍 } )
16 15 eleq2i ( 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ↔ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
17 13 16 sylnib ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
18 12 17 jca ( 𝜑 → ( ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) )