Metamath Proof Explorer


Theorem lspindp2

Description: Alternate way to say 3 vectors are mutually independent (rotate right). (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses lspindp1.v V=BaseW
lspindp1.o 0˙=0W
lspindp1.n N=LSpanW
lspindp1.w φWLVec
lspindp2.x φXV
lspindp2.y φYV0˙
lspindp2.z φZV
lspindp2.q φNXNY
lspindp2.e φ¬ZNXY
Assertion lspindp2 φNZNX¬YNZX

Proof

Step Hyp Ref Expression
1 lspindp1.v V=BaseW
2 lspindp1.o 0˙=0W
3 lspindp1.n N=LSpanW
4 lspindp1.w φWLVec
5 lspindp2.x φXV
6 lspindp2.y φYV0˙
7 lspindp2.z φZV
8 lspindp2.q φNXNY
9 lspindp2.e φ¬ZNXY
10 8 necomd φNYNX
11 prcom XY=YX
12 11 fveq2i NXY=NYX
13 12 eleq2i ZNXYZNYX
14 9 13 sylnib φ¬ZNYX
15 1 2 3 4 6 5 7 10 14 lspindp1 φNZNX¬YNZX