Metamath Proof Explorer


Theorem mapdheq4

Description: Lemma for ~? mapdh . Part (4) in Baer p. 46. (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdhe4.y φYV0˙
mapdhe.z φZV0˙
mapdh.xn φ¬XNYZ
mapdh.yz φNYNZ
mapdh.eg φIXFY=G
mapdh.ee φIXFZ=E
Assertion mapdheq4 φIYGZ=E

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdhe4.y φYV0˙
19 mapdhe.z φZV0˙
20 mapdh.xn φ¬XNYZ
21 mapdh.yz φNYNZ
22 mapdh.eg φIXFY=G
23 mapdh.ee φIXFZ=E
24 19 eldifad φZV
25 3 5 14 dvhlvec φULVec
26 17 eldifad φXV
27 6 8 9 25 18 24 26 21 20 lspindp1 φNXNZ¬YNXZ
28 27 simpld φNXNZ
29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 24 28 mapdhcl φIXFZD
30 23 29 eqeltrrd φED
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 30 28 mapdheq φIXFZ=EMNZ=JEMNX-˙Z=JFRE
32 23 31 mpbid φMNZ=JEMNX-˙Z=JFRE
33 32 simpld φMNZ=JE
34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 mapdheq4lem φMNY-˙Z=JGRE
35 18 eldifad φYV
36 6 8 9 25 35 19 26 21 20 lspindp2 φNXNY¬ZNXY
37 36 simpld φNXNY
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 35 37 mapdhcl φIXFYD
39 22 38 eqeltrrd φGD
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 39 37 mapdheq φIXFY=GMNY=JGMNX-˙Y=JFRG
41 22 40 mpbid φMNY=JGMNX-˙Y=JFRG
42 41 simpld φMNY=JG
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 42 18 19 30 21 mapdheq φIYGZ=EMNZ=JEMNY-˙Z=JGRE
44 33 34 43 mpbir2and φIYGZ=E