Metamath Proof Explorer


Theorem mapdheq

Description: Lemmma for ~? mapdh . The defining equation for h(x,x',y)=y' in part (2) in Baer p. 45 line 24. (Contributed by NM, 4-Apr-2015)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdhe.y φ Y V 0 ˙
mapdhe.g φ G D
mapdh.ne2 φ N X N Y
Assertion mapdheq φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdhe.y φ Y V 0 ˙
19 mapdhe.g φ G D
20 mapdh.ne2 φ N X N Y
21 1 2 17 15 18 mapdhval2 φ I X F Y = ι h D | M N Y = J h M N X - ˙ Y = J F R h
22 21 eqeq1d φ I X F Y = G ι h D | M N Y = J h M N X - ˙ Y = J F R h = G
23 3 4 5 6 7 8 9 10 11 12 13 14 17 18 15 20 16 mapdpg φ ∃! h D M N Y = J h M N X - ˙ Y = J F R h
24 nfv h φ
25 nfcvd φ _ h G
26 nfvd φ h M N Y = J G M N X - ˙ Y = J F R G
27 sneq h = G h = G
28 27 fveq2d h = G J h = J G
29 28 eqeq2d h = G M N Y = J h M N Y = J G
30 oveq2 h = G F R h = F R G
31 30 sneqd h = G F R h = F R G
32 31 fveq2d h = G J F R h = J F R G
33 32 eqeq2d h = G M N X - ˙ Y = J F R h M N X - ˙ Y = J F R G
34 29 33 anbi12d h = G M N Y = J h M N X - ˙ Y = J F R h M N Y = J G M N X - ˙ Y = J F R G
35 34 adantl φ h = G M N Y = J h M N X - ˙ Y = J F R h M N Y = J G M N X - ˙ Y = J F R G
36 24 25 26 19 35 riota2df φ ∃! h D M N Y = J h M N X - ˙ Y = J F R h M N Y = J G M N X - ˙ Y = J F R G ι h D | M N Y = J h M N X - ˙ Y = J F R h = G
37 23 36 mpdan φ M N Y = J G M N X - ˙ Y = J F R G ι h D | M N Y = J h M N X - ˙ Y = J F R h = G
38 22 37 bitr4d φ I X F Y = G M N Y = J G M N X - ˙ Y = J F R G