Metamath Proof Explorer


Theorem mapdheq2

Description: Lemmma for ~? mapdh . One direction of part (2) in Baer p. 45. (Contributed by NM, 4-Apr-2015)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdhe.y φYV0˙
mapdhe.g φGD
mapdh.ne2 φNXNY
Assertion mapdheq2 φIXFY=GIYGX=F

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdhe.y φYV0˙
19 mapdhe.g φGD
20 mapdh.ne2 φNXNY
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 mapdheq φIXFY=GMNY=JGMNX-˙Y=JFRG
22 16 adantr φMNY=JGMNX-˙Y=JFRGMNX=JF
23 3 5 14 dvhlmod φULMod
24 17 eldifad φXV
25 18 eldifad φYV
26 6 7 9 23 24 25 lspsnsub φNX-˙Y=NY-˙X
27 26 fveq2d φMNX-˙Y=MNY-˙X
28 3 10 14 lcdlmod φCLMod
29 11 12 13 28 15 19 lspsnsub φJFRG=JGRF
30 27 29 eqeq12d φMNX-˙Y=JFRGMNY-˙X=JGRF
31 30 biimpa φMNX-˙Y=JFRGMNY-˙X=JGRF
32 31 adantrl φMNY=JGMNX-˙Y=JFRGMNY-˙X=JGRF
33 14 adantr φMNY=JGMNX-˙Y=JFRGKHLWH
34 19 adantr φMNY=JGMNX-˙Y=JFRGGD
35 simprl φMNY=JGMNX-˙Y=JFRGMNY=JG
36 18 adantr φMNY=JGMNX-˙Y=JFRGYV0˙
37 17 adantr φMNY=JGMNX-˙Y=JFRGXV0˙
38 15 adantr φMNY=JGMNX-˙Y=JFRGFD
39 20 necomd φNYNX
40 39 adantr φMNY=JGMNX-˙Y=JFRGNYNX
41 1 2 3 4 5 6 7 8 9 10 11 12 13 33 34 35 36 37 38 40 mapdheq φMNY=JGMNX-˙Y=JFRGIYGX=FMNX=JFMNY-˙X=JGRF
42 22 32 41 mpbir2and φMNY=JGMNX-˙Y=JFRGIYGX=F
43 42 ex φMNY=JGMNX-˙Y=JFRGIYGX=F
44 21 43 sylbid φIXFY=GIYGX=F