Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
2 |
|
mapdh.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
3 |
|
mapdh.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
mapdh.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdh.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
mapdh.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
7 |
|
mapdh.s |
⊢ − = ( -g ‘ 𝑈 ) |
8 |
|
mapdhc.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
9 |
|
mapdh.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
10 |
|
mapdh.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
mapdh.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
12 |
|
mapdh.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
13 |
|
mapdh.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
14 |
|
mapdh.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdhc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
mapdh.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
17 |
|
mapdhcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
18 |
|
mapdhe.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
|
mapdhe.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
20 |
|
mapdh.ne2 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
mapdheq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) |
22 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
23 |
3 5 14
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
24 |
17
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
25 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
26 |
6 7 9 23 24 25
|
lspsnsub |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) ) |
28 |
3 10 14
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
29 |
11 12 13 28 15 19
|
lspsnsub |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐹 ) } ) ) |
30 |
27 29
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐹 ) } ) ) ) |
31 |
30
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐹 ) } ) ) |
32 |
31
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐹 ) } ) ) |
33 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
34 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → 𝐺 ∈ 𝐷 ) |
35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
36 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
37 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
38 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → 𝐹 ∈ 𝐷 ) |
39 |
20
|
necomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 33 34 35 36 37 38 40
|
mapdheq |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → ( ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑋 〉 ) = 𝐹 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝐹 ) } ) ) ) ) |
42 |
22 32 41
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑋 〉 ) = 𝐹 ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑋 〉 ) = 𝐹 ) ) |
44 |
21 43
|
sylbid |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑋 〉 ) = 𝐹 ) ) |