Description: Lemmma for ~? mapdh . Part (2) in Baer p. 45. The bidirectional version of mapdheq2 seems to require an additional hypothesis not mentioned in Baer. TODO fix ref. TODO: We probably don't need this; delete if never used. (Contributed by NM, 4-Apr-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdh.q | ⊢ 𝑄 = ( 0g ‘ 𝐶 ) | |
mapdh.i | ⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | ||
mapdh.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
mapdh.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | ||
mapdh.s | ⊢ − = ( -g ‘ 𝑈 ) | ||
mapdhc.o | ⊢ 0 = ( 0g ‘ 𝑈 ) | ||
mapdh.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | ||
mapdh.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | ||
mapdh.d | ⊢ 𝐷 = ( Base ‘ 𝐶 ) | ||
mapdh.r | ⊢ 𝑅 = ( -g ‘ 𝐶 ) | ||
mapdh.j | ⊢ 𝐽 = ( LSpan ‘ 𝐶 ) | ||
mapdh.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
mapdhc.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | ||
mapdh.mn | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) | ||
mapdhcl.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
mapdhe2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
mapdhe2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) | ||
mapdh.ne3 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
mapdh.my | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) | ||
Assertion | mapdheq2biN | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ↔ ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑋 〉 ) = 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | ⊢ 𝑄 = ( 0g ‘ 𝐶 ) | |
2 | mapdh.i | ⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | |
3 | mapdh.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
4 | mapdh.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | |
5 | mapdh.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
6 | mapdh.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
7 | mapdh.s | ⊢ − = ( -g ‘ 𝑈 ) | |
8 | mapdhc.o | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
9 | mapdh.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | |
10 | mapdh.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | |
11 | mapdh.d | ⊢ 𝐷 = ( Base ‘ 𝐶 ) | |
12 | mapdh.r | ⊢ 𝑅 = ( -g ‘ 𝐶 ) | |
13 | mapdh.j | ⊢ 𝐽 = ( LSpan ‘ 𝐶 ) | |
14 | mapdh.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
15 | mapdhc.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) | |
16 | mapdh.mn | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) | |
17 | mapdhcl.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
18 | mapdhe2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) | |
19 | mapdhe2.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) | |
20 | mapdh.ne3 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
21 | mapdh.my | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) | |
22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | mapdheq2 | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑋 〉 ) = 𝐹 ) ) |
23 | 20 | necomd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ) |
24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 21 18 17 15 23 | mapdheq2 | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑋 〉 ) = 𝐹 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) ) |
25 | 22 24 | impbid | ⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ↔ ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑋 〉 ) = 𝐹 ) ) |