Metamath Proof Explorer


Theorem mapdheq2biN

Description: Lemmma for ~? mapdh . Part (2) in Baer p. 45. The bidirectional version of mapdheq2 seems to require an additional hypothesis not mentioned in Baer. TODO fix ref. TODO: We probably don't need this; delete if never used. (Contributed by NM, 4-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdhe2.y φ Y V 0 ˙
mapdhe2.g φ G D
mapdh.ne3 φ N X N Y
mapdh.my φ M N Y = J G
Assertion mapdheq2biN φ I X F Y = G I Y G X = F

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdhe2.y φ Y V 0 ˙
19 mapdhe2.g φ G D
20 mapdh.ne3 φ N X N Y
21 mapdh.my φ M N Y = J G
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 mapdheq2 φ I X F Y = G I Y G X = F
23 20 necomd φ N Y N X
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 21 18 17 15 23 mapdheq2 φ I Y G X = F I X F Y = G
25 22 24 impbid φ I X F Y = G I Y G X = F